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Abstract
The rapid advancements in machine learning techniques
have led to significant achievements in various real-world
robotic tasks. These tasks heavily rely on fast and energy-
efficient inference of deep neural network (DNN) models
when deployed on robots. To enhance inference performance,
distributed inference has emerged as a promising approach,
parallelizing inference across multiple powerful GPU devices
in modern data centers using techniques such as data paral-
lelism, tensor parallelism, and pipeline parallelism. However,
when deployed on real-world robots, existing parallel meth-
ods fail to provide low inference latency and meet the energy
requirements due to the limited bandwidth of robotic IoT.
We present Intra-DP, a high-performance distributed in-

ference system optimized for robotic IoT. Intra-DP employs
a fine-grained approach to parallelize inference at the gran-
ularity of local operators within DNN layers (i.e., operators
that can be computed independently with the partial input,
such as the convolution kernel in the convolution layer). By
doing so, Intra-DP enables different operators of different
layers to be computed and transmitted concurrently, and
overlap the computation and transmission phases within
the same inference task. The evaluation demonstrate that
Intra-DP reduces inference time by 14.9% ~41.1% and energy
consumption per inference by up to 35.3% compared to the
state-of-the-art baselines.

1 Introduction
The rapid progress in machine learning (ML) techniques
has led to remarkable achievements in various fundamental
robotic tasks, such as object detection [21, 31, 34], robotic
control [25, 51, 61], and environmental perception [4, 26, 56].
However, deploying these ML applications on real-world
robots requires fast and energy-efficient inference of their
deep neural network (DNN) models, given the need for swift
environmental responses and the limited battery capacity of
robots. Placing the entire model on robots not only requires
additional computing accelerators on robots (e.g., GPU [38],
FPGA [39], SoC [16]), but also introduce additional energy
consumption (e.g., 162% more for [34] in our experiments)
due to the computationally intensive nature of DNN mod-
els, while placing the entire model in the cloud brings an
extended response delay.
Distributed inference, which involves inference across

multiple GPU devices, has emerged as a promising approach
to meet the latency requirements of robotic applications and

extend the battery lifetime of robots. This paradigm has been
widely adopted in data centers [18, 57, 65], where numer-
ous GPUs are utilized to speed up large model inference,
such as in the case of ChatGPT [55]. Adopting distributed
inference across robots and other powerful GPU devices
through the Internet of Things for these robots (robotic IoT)
not only accelerates the inference process by leveraging the
high computing capabilities of powerful GPUs but also al-
leviates the local computational burden, thereby reducing
energy consumption, making it an ideal solution for robotic
applications.
However, all existing parallel methods for distributed in-

ference in the data center are ill-suited for robotic IoT. In data
centers, there are mainly three kinds of parallel methods:
Data parallelism (DP) replicates the model across devices,
and lets each replica handle one mini-batch (i.e., a subset that
slices out of an input data set); Tensor parallelism (TP) splits
a single DNN layer over devices; Pipeline parallelism (PP)
places different layers of a DNN model over devices (layer
partitioning) and pipelines the inference to reduce devices’
idling time (pipeline execution).
For DP, the small batch sizes inherent to robotic IoT ap-

plications (typically 1) hinder the mini-batch computation,
rendering DP inapplicable for robotic IoT. In the data center,
DP is feasible due to the large batch sizes employed (e.g.,
16 images), allowing for the division of inputs into mini-
batches that still contain several complete inputs (e.g., 2
images). However, in robotic IoT, real-time performance is
crucial, necessitating immediate inference upon receiving in-
puts, which typically have smaller batch sizes (e.g., 1 image).
Further splitting these inputs would result in mini-batches
containing incomplete inputs (e.g., 1/4 of an image), which
cannot be computed parallel to speed up inference.

TP requires frequent synchronization among devices, lead-
ing to unacceptable communication overhead in robotic IoT.
By partitioning parameter tensors of a layer across GPUs,
TP allows concurrent computation on different parts of this
tensor but requires an all-reduce communication [65] to
combine computation results from different devices, which
entails significant communication overhead. Consequently,
TP is used mainly for large layers that are too large to fit in
one device in data centers and require dedicated high-speed
interconnects (e.g., 400 Gbps for NVLink [24]) even within
data centers. On the contrary, robots must prioritize seam-
less mobility and primarily depend on wireless connections,
which inherently possess limited bandwidth, as described in
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Figure 1. Existing distributed inference approaches on
VGG19 [46] in our experiments, which adopt PP paradigm
with various layer partitioning scheduling strategies. The
X-axis of the graph represents different layer partitioning
strategies, where ‘layer i’ indicates that all layers up to and
including the 𝑖𝑡ℎ layer are computed on the robot, while the
subsequent layers are processed on the GPU server.

Sec. 2.1, making all-reduce synchronization an unacceptable
overhead (e.g., the inference time with TP was up to 143.9X
slower than local computation in Sec. 2.3).

Consequently, existing distributed inference approaches [5,
27] in robotic IoT are constrained to the PP paradigm. Since
the PP paradigm in data centers consists of layer partition-
ing and pipeline execution, where the pipeline execution of
PP enhances inference throughput rather than reducing the
completion time of a single inference [6], the most critical
requirement in robotic IoT, existing methods on robotic IoT
concentrate on optimizing the layer partitioning aspect of PP
to achieve fast and energy-efficient inference. Based on the
fact that the amounts of output data in some intermediate
layers of a DNN model are significantly smaller than that
of its raw input data [17], DNN layer partitioning strategies
constitute various trade-offs between computation and trans-
mission, taking into account application-specific inference
speed requirements and energy consumption demands, as
shown in Fig. 1.

However, existing methods based on the PP paradigm face
significant transmission bottlenecks in robotic IoT due to
the inherent scheduling mechanism. The PP paradigm on
robotic IoT involves three sequential phases: computing early
DNN layers on robots, transmitting intermediate results, and
completing inference on a GPU server, where the limited
bandwidth of real-world networks often results in transmis-
sion time exceeding computation time. Despite optimal layer

partitioning strategies [5, 27], the transmission overhead be-
comes a substantial bottleneck, accounting for up to 70.45%
of inference time in our experiments, due to the limited band-
width of robotic IoT. This overhead not only slows down
inference speed and consumes significantly more energy but
also cannot be effectively mitigated by overlapping computa-
tion and transmission phases across multiple inference tasks
via pipeline execution, which still fails to reduce the comple-
tion time of a single inference task [6], a crucial aspect for
robotic applications.
The key reason for the problem of the above methods is

that existing methods conduct layer-granulated scheduling,
which divides a single inference task into multiple sequen-
tial phases, thereby precluding parallel execution within the
scope of an individual inference task. As transmission time
constitutes a substantial portion of the total inference time
(approximately half) in existing methods, a novel parallel
method that can efficiently overlap computation and trans-
mission within the same inference task has the potential to
address this shortcoming, achieving fast inferences. Note
that the robot can not enter low-power sleep mode during
the transmission phase due to the need to promptly continue
working upon receiving inference results, but can only en-
ter standby mode, when chips like CPU, GPU, and memory
consume non-negligible power even when not computing
(e.g., 95% power consumption in our experiments). Such a
parallel method would reduce the robot’s standby time with-
out significantly increasing energy consumption during the
computation phase, thereby also decreasing overall energy
consumption.

In this paper, we present Intra-DP (Intra-Data Parallel), a
high-performance distributed inference system optimized
for real-world robotic IoT networks. We discovered that op-
erators for each DNN layer (e.g., convolution, ReLU, softmax)
can be categorized into two types: local operators and global
operators, depending on whether they can be computed in-
dependently with partial input. For instance, softmax [32]
requires the complete input vector to calculate the corre-
sponding probability distribution, referring to it as a global
operator, while ReLU [7] and convolution [35] can be com-
puted with partial input tensor (the elements in the input
vector for ReLU and the blocks in the input tensor for con-
volution), referring to them as local operators. Since a single
local operator like convolution kernel may require multiple
calculations per layer, we treat each calculation of the local
operator as an independent local operator in this article for
easy discussion. Local operators are widely used in robotic
applications, especially convolution layers in computer vi-
sion [34] and point cloud tasks [51]. The local operator gran-
ularity provides a finer granularity for Intra-DP, allowing
different local operators of different layers to be computed
and transmitted concurrently, enabling the overlap of com-
putation and transmission phases within the same inference
task to achieve fast and energy-efficient inference.
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The design of Intra-DP is confronted with two major chal-
lenges. The first one is how to guarantee the correctness of
inference results based on local operator. We propose Local
Operator Parallelism (LOP), which reduces the granularity of
calculation from each layer to each local operator. LOP deter-
mines the correct input required for different local operators
based on their calculation characteristics and processes at
first. When a part of the local operators in a layer completes
the calculation and the tensor composed of these local opera-
tors satisfies the input requirements of the local operators in
the subsequent layer, the local operators in the subsequent
layer can be calculated in advance, without waiting for all
local operators of the current layer to be computed in LOP.
For global operator layers, Intra-DP enforces a synchroniza-
tion before these layers to combine the complete input for
them, as TP’s all-reduce communications do. In this way,
Intra-DP only change the execution sequence of local opera-
tors among local operator layers and ensures the calculation
correctness of local operator layers through LOP and global
operator layers through synchronization.

The second challenge is under LOP, how to properly sched-
ule the computation and transmission of each local operator
to achieve fast and energy-efficient inference under vari-
ous hardware conditions and network bandwidths. Intra-DP
places part of the local operator execution on GPU servers
and transmits the corresponding part of the input tensor
based on LOP, while computing the rest of the local op-
erators on robot with a novel Local Operator Scheduling
Strategy (LOSS). LOSS formulates the problem of determin-
ing which part of the local operators should be executed on
robots and which part should be executed on GPU servers as
a nonlinear optimization problem (see Sec. 4.2), and sched-
ules the computation and transmission of each local operator
based on the solution obtained via the differential evolution
algorithm [43].

We implemented Intra-DP in PyTorch [41] and evaluated
Intra-DP on our real-world robots under two typical real-
world robotic applications [34, 51] and several models com-
mon to mobile devices on a larger scale [46, 47, 49, 53, 58].
We compared Intra-DP with two SOTA pipeline parallelism
methods as baselines: DSCCS [27], aimed at accelerating in-
ference, and SPSO-GA [5], focused on optimizing energy con-
sumption, under different real-world robotic IoT networks
environments (namely indoors and outdoors). Evaluation
shows that:

• Intra-DP is fast. Intra-DP reduced inference time by
14.9% ~41.1% compared to baselines under indoors and
outdoors environments.

• Intra-DP is energy-efficient. Intra-DP reduced up to
35.3% energy consumption per inference compared to
baselines, due to faster inference speed and limited-
increased power consumption against time.

• Intra-DP is robust in various robotic IoT environments.
When the robotic IoT environment changed (from

indoors to outdoors), Intra-DP’s superior performance
remained consistent.

• Intra-DP is easy to use. It took only three lines of code
to apply Intra-DP to existing ML applications.

Our main contribution are LOP, a fine-grained parallel
method based on local operators, and LOSS, a new sched-
uling strategy based on LOP optimized for distributed in-
ference over real-world robotic IoT networks. By leverag-
ing these contributions, Intra-DP dramatically reduces the
transmission overhead in existing distributed inference on
robotic IoT by overlapping the computation and transmis-
sion phases within the same inference task, achieving fast
and energy-efficient distributed inference on robotic IoT. We
envision that the fast and energy-efficient inference of Intra-
DP will foster the deployment of diverse robotic tasks on
real-world robots in the field. Intra-DP’s code is released on
https://github.com/eurosys25paper445/intraDP.
In the rest of this paper, we introduce the background of

this paper in Sec. 2, give an overview of Intra-DP in Sec. 3,
present the detailed design of Intra-DP in Sec. 4, evaluate
Intra-DP in Sec. 6, and finally conclude in Sec. 7.
2 Background
2.1 Characteristics of Robotic IoT
In real-world robotic IoT scenarios, devices often navigate
andmove around for tasks like search and exploration.While
wireless networks provide high mobility, they also have lim-
ited bandwidth. For instance, Wi-Fi 6, the most advanced
Wi-Fi technology, offers a maximum theoretical bandwidth
of 1.2 Gbps for a single stream [30]. However, not only the
limited hardware resources on the robot can not fully play
the potential of Wi-Fi 6 [60], but also the actual available
bandwidth of wireless networks is often reduced in practice
due to factors such as movement of the devices [33, 40], oc-
clusion from by physical barriers [9, 45], and preemption of
the wireless channel by other devices [2, 44].
To demonstrate the instability of wireless transmission

in real-world situations, we conducted a robot surveillance
experiment using four-wheel robots navigating around sev-
eral given points at 5-40cm/s speed in our lab (indoors) and
campus garden (outdoors), with hardware and wireless net-
work settings as described in Sec. 6. We believe our setup
represents robotic IoT devices’ state-of-the-art computation
and communication capabilities. We saturated the wireless
network connection with iperf [1] and recorded the average
bandwidth capacity between these robots every 0.1s for 5
minutes.
The results in Fig. 2 show average bandwidth capacities

of 93 Mbps and 73 Mbps for indoor and outdoor scenarios,
respectively. The outdoor environment exhibited higher in-
stability, with bandwidth frequently dropping to extremely
low values around 0 Mbps, due to the lack of walls to reflect

3

https://github.com/eurosys25paper445/intraDP


331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

EuroSys’25, March 2025, ROTTERDAM Anon. Submission Id: 445

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

0 100 200 300
time (s)

0

100

200

ba
nd

wi
dt

h 
(M

bp
s)

(a) Indoors

0 100 200 300
time (s)

0

100

200

ba
nd

wi
dt

h 
(M

bp
s)

(b) Outdoors

Figure 2. The instability of wireless transmission in robotic
IoT networks.

wireless signals and the presence of obstacles like trees be-
tween communicating robots, resulting in fewer received
signals compared to indoor environments.

In summary, robotic IoT systems’ wireless transmission is
constrained by limited bandwidth, both due to the theoretical
upper limit of wireless transmission technologies and the
practical instability of wireless networks.
2.2 Characteristics of Data Center Networks
Data center networks, which are used for large model in-
ference (e.g., ChatGPT [55]), are wired and typically exhibit
higher bandwidth capacity and lower fluctuation compared
to robotic IoT networks. GPU devices in data centers are
interconnected using high-speed networking technologies
such as InfiniBand [50] or PCIe [24], offering bandwidths
ranging from 40 Gbps to 500 Gbps. The primary cause of
bandwidth fluctuation in these networks is congestion on
intermediate switches, which can be mitigated through traf-
fic scheduling techniques implemented on the switches [37].
The stable and high-bandwidth nature of data center net-
works makes them well-suited for demanding tasks like
large model inference, in contrast to the more variable and
resource-constrained environments found in robotic IoT net-
works.
2.3 Existing distributed inference methods in the

data center
Data parallelism. DP [57] is a widely used technique in
distributed inference that splits input data across multiple
GPU devices to perform parallel inference. Each device has
a complete copy of the model and processes a portion of
the input data independently, combining the results to pro-
duce the final output. This approach improves throughput
by distributing the workload across devices. However, data
parallelism’s scalability is limited by the total batch size [36],
which is especially challenging in robotic IoT applications. In
these applications, smaller batch sizes are common because
of the need for quick responses to the environment and im-
mediate inference when inputs are received. For example, in
our experiments, the robot continuously receives the latest
images from the camera for inference, with a batch size of
only 1, which cannot be further divided into mini-batches, a
crucial requirement for effective data parallelism.

Tensor parallelism. TP [65] is a distributed inference
technique that splits a model’s layer parameters across mul-
tiple devices, each storing and computing a portion of the
weights. This approach requires an all-reduce communica-
tion step after each layer to combine results from different
devices, which introduces significant overhead, especially
for large DNN layers. To mitigate this, TP is typically used
across GPUs within the same server in data centers, using
fast intra-server GPU-to-GPU links like NVLink [24], which
is helpful when the model is too large for a single device.
However, in robotic IoT, the limited bandwidth makes the
communication cost of TP prohibitively high. Our evaluation
on the same testbed as Sec. 6 of DINA [35], a state-of-the-art
TP method, shows that transmission time takes up 49% to
94% of the total inference time due to all-reduce communi-
cation for each layer, making TP’s inference time 45.2X to
143.9X longer than local computation in Table 1. Although
TP has lower power consumption (13.4% to 67.3% less than
local computation), the extended transmission times signifi-
cantly increase energy consumption per inference by 28.5X
to 62.7X in Table 2. As TP greatly extends inference time,
making it impractical for real-world robotic applications, we
did not consider it further in this paper.
Pipeline parallelism. PP [18] is a distributed inference

technique that partitions DNN model layers across multiple
devices(layer partitioning), forming an inference pipeline
for concurrent processing of multiple tasks. While PP can
increase throughput and resource utilization via pipeline exe-
cution, it primarily focuses on enhancing overall throughput
rather than reducing single-inference latency [6], which is
crucial in robotic IoT. As a result, existing distributed in-
ference approaches [5, 27] in robotic IoT primarily adopt
PP paradigm and focus on layer partitioning to achieve fast
and energy-efficient inference, with two main categories
based on their optimization goals: accelerating inference for
diverse DNN structures [17, 22, 27, 35, 59] and optimizing
robot energy consumption during inference [5, 28, 54]. How-
ever, both kinds of methods suffer from the transmission
bottleneck inherent to PP’s scheduling mechanism, which
can be eliminated by Intra-DP.
2.4 Other methods to speed up DNN Models

Inference on Robotic IoT
Compressed communication. Compressed communica-
tion is essential for efficient distributed inference in wireless
networks, as it significantly reduces communication over-
head through techniques such as quantization and model
distillation. Quantization [8, 13, 14] reduces the numerical
precision of model weights and activations, minimizing the
memory footprint and computational requirements of deep
learning models by converting high-precision floating-point
values (e.g., 32-bit) to lower-precision representations (e.g.,
8-bit) with minimal loss of model accuracy. Model distil-
lation [15, 29, 52], on the other hand, involves training a
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Model(number Local com- Environment Transmission time (s) Inference time (s) Percentage(%)
of parameters putation time(s) with TP with TP with TP

MobileNet_V3_Small(2M) 0.031(±0.004) indoors 0.698(±0.135) 1.400(±0.232) 49.85
outdoors 0.901(±0.778) 1.775(±1.370) 51.23

ResNet101(44M) 0.065(±0.005) indoors 7.156(±3.348) 8.106(±3.403) 87.95
outdoors 8.470(±6.337) 9.356(±6.328) 90.46

VGG19_BN(143M) 0.063(±0.002) indoors 5.152(±4.873) 5.444(±4.831) 70.18
outdoors 5.407(±6.673) 5.759(±6.635) 93.70

Table 1. Average transmission time (Second), inference time (Second), percentage that transmission time accounts for of
inference time and their standard deviation (±𝑛) with TP on different models in different environments. “Local computation”
refers to inference the entire model locally on the robot.

Model(number Environment Power consumption(W) Energy consumption(J) per inference
of parameters) Local TP Local TP

MobileNet_V3_Small(2M) indoors 6.05(±0.21) 5.24(±0.19) 0.3(±0.09) 7.33(±1.21)
outdoors 6.05(±0.21) 5.11(±0.28) 0.3(±0.09) 9.08(±7.0)

ResNet101(44M) indoors 11.27(±0.51) 4.97(±0.16) 0.93(±0.19) 40.28(±16.91)
outdoors 11.27(±0.51) 4.9(±0.23) 0.93(±0.19) 45.8(±30.98)

VGG19_BN(143M) indoors 14.86(±0.43) 4.88(±0.29) 1.19(±0.18) 26.55(±23.56)
outdoors 14.86(±0.43) 4.87(±0.27) 1.19(±0.18) 28.06(±32.33)

Table 2. Power consumption against time (Watt) and energy consumption per inference (Joule) with standard deviation (±𝑛)
with TP on different models in different environments. “Local” represents “Local computation”

smaller, more efficient "student" model to mimic the behav-
ior of a larger, more accurate "teacher" model by minimizing
the difference between their outputs, allowing the distilled
student model to retainmuch of the teachermodel’s accuracy
while requiring significantly fewer resources. These model
compression methods complement distributed inference by
achieving faster inference speed through model modifica-
tions, potentially sacrificing some accuracy with smaller
models, while distributed inference realizes fast inference
without loss of accuracy by intelligently scheduling compu-
tation tasks across multiple devices.
Inference Job scheduling. Significant research efforts

have been devoted to exploring inference parallelism and
unleashing the potential of layer partition to accelerate DNN
inference, such as inference job scheduling, which aims
to accelerate multiple DNN inference tasks by optimizing
their execution on various devices under different network
bandwidths while considering application-specific inference
speed requirements and energy consumption demands. For
instance, [3, 10] support online scheduling of offloading in-
ference tasks based on the current network and resource
status of mobile systems while meeting user-defined energy
constraints, while [11] focus on optimizing DNN inference
workloads in cloud computing using a deep reinforcement
learning based scheduler for QoS-aware scheduling of het-
erogeneous servers, aiming to maximize inference accuracy
and minimize response delay. However, while these methods
focus on overall optimization in multi-task scenarios involv-
ing multi-robots, they do not address the optimization of
single inference tasks and are thus orthogonal to distributed

inference for a single inference, where improved distributed
inference can provide faster and more energy-efficient infer-
ence for these scenarios.
3 Overview
3.1 Workflow of Intra-DP
Fig. 3 presents the workflow of Intra-DP and compares it
with TP and PP under robotic IoT networks with limited
bandwidth, illustrating why existing methods suffer from
transmission overhead and how Intra-DP solves this issue
via its LOP.

While TP can place some local operator execution on the
GPU server, it requires an all-reduce communication [65] to
combine computation results from different devices, which
entails significant communication overhead (as shown by
the red dotted lines for synchronization Fig. 3). Although
the layer partition algorithm [27] can be used to minimize
overall inference time, the transmission time still becomes a
significant bottleneck, as illustrated by the extremely long
transmission in Fig. 3.

To alleviate the transmission overhead in distributed infer-
ence, Intra-DP overlaps the computation and transmission of
different local operators from different local operator layers,
as shown in Fig. 3. Compared with TP, Intra-DP cancels the
synchronization of the all-reduce communication for local
operator layers and ensures that each local operator can get
the required input in time and obtain the correct calcula-
tion results through LOP, rather than relying on all-reduce
communication for local operator layers. Intra-DP maintains
synchronization for global operator layers, which do not
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Figure 3.Workflow of Intra-DP. Each local operator layer
have to complete the calculation of three local operators,
and the same local operator in the three cases has the same
computation time on robots and GPU servers, as well as the
corresponding transmission time. The output tensor volume
of layer 2 is larger than that of layer 1, resulting in longer
transmission times for local operators in layer 2, and PP
selects a layer partition strategy at layer 1 [27].

have local operators and require the complete input (the
entire output tensor of the previous layer) to perform the
calculation, ensuring the correctness of the global operator
layers’ inference. Compared with PP, Intra-DP starts trans-
mitting some local operators and the corresponding input
in advance, without waiting for all local operators in the
current local operator layer to complete the calculation. In
this way, Intra-DP achieves much faster inference compared
with existing distributed inference methods.

Moreover, the idle time on the robot (when the robot is
not computing, as shown in Fig. 3) consumes significant en-
ergy. This is because the robot cannot enter a low-power
sleep mode while waiting for the final inference result from
the GPU server, as it has to promptly continue working
when it receives the inference results. During the standby
phase (idle time), chips like CPU, GPU, andmemory consume
non-negligible power even when not computing, due to the
static power consumption rooted in transistors’ leakage cur-
rent [23]. Meanwhile, we found that wireless network cards
consume only 0.21Watt for transmission during the idle time,
while the robot consumes 13.35 Watt during computing. In
this way, Intra-DP dramatically reduces the idle time on the
robot, alleviating the energy wasted by standby mode, and
increases a negligible amount of network card transmission
power consumption during computing, thereby reducing the
overall energy consumption for each inference.
To achieve the workflow shown in Fig. 3, the design of

Intra-DP must tackle two problems: guaranteeing the cor-
rectness of inference results based on local operators and

scheduling the computation and transmission of each local
operator. In Sec. 4.1, we will explain how Intra-DP ensures
that each local operator can still obtain the correct calcu-
lation result via LOP, and in Sec. 4.2, we will discuss how
Intra-DP achieves fast and energy-efficient inference through
its LOSS.
3.2 Architecture of Intra-DP

Figure 4. Architecture of Intra-DP. The core components
of Intra-DP are highlighted in purple. Intra-DP adopts the
same scheduling scheme as in Fig. 3.

Fig. 4 shows the architecture of Intra-DP, which adds an in-
terceptor for each DNN layer to flexibly split the input tensor
and combine the output tensor for each operator. Compared
with the original model inference process on the robot, Intra-
DP only increases the time cost of interceptors, which is
the time cost of splitting the input tensor and combining
the output tensor. The time cost of splitting the input ten-
sor is negligible because the data transfer can be completed
through the backend processes of the Intra-DP client and
server while the local operators assigned to be executed on
the robot and GPU server continue to perform subsequent
layer calculations. The time cost of combining the output
tensor is mainly bound by the time when the device on the
other side completes the corresponding computation and
transmission, causing prolonged waiting time. Intra-DP for-
mulates such waiting time into the nonlinear optimization
problem in its LOSS, minimizing the waiting time and im-
plementing scheduling schemes on local operators with a
higher degree of parallelism. In this way, Intra-DP only in-
creases negligible extra time on system cost and achieves
faster inference via LOP and LOSS.
To address frequent fluctuations in real-world wireless

networks of robotic IoT, Intra-DP generates optimal local
operator schedule plans for the DNN model under different
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bandwidth conditions in advance. During inference, Intra-
DP predicts the network bandwidth using mature tools [63]
in the field of wireless transmission and adopts the corre-
sponding schedule plan based on the predicted bandwidth.
To ensure that Intra-DP can flexibly switch among various
schedule plans, it keeps a copy of the model on the robot at
the GPU server (Fig. 4), avoiding unnecessary transmission
when migrating the parameters of local operators between
robots and the GPU server. It is important to note that the
model inference time, typically tens or hundreds of millisec-
onds, is finer (smaller) than the granularity (or frequency) of
bandwidth fluctuation in real-world robotic IoT networks,
as shown in Fig. 2. Therefore, we assume that the network
bandwidth of robotic IoT during each inference is stable,
while the network bandwidth for different inferences may
differ.
4 Detailed Design
4.1 Local Operator Parallelism
LOP guarantees the correctness of inference results by deter-
mining the correct input required for different local opera-
tors based on their calculation characteristics and processes.
We summarize three classes of local operators common in
models used on mobile devices:

• Element-wise local operator. This class of operators
compute each element of the input tensor separately,
requiring only the corresponding element from the in-
put tensor to perform the calculation. They are widely
used in activation functions such as ReLU [7], Sig-
moid [62], SiLU [20]. However, it is important to note
that some activation functions, like softmax [32], re-
quire all elements for computation and are not con-
sidered local operators, but global operators.

• Block-wise local operator. This class of operators re-
quire a block at the corresponding position in the
input tensor and are widely used in layers associ-
ated with convolution, such as convolution [35], max-
pool [48]. The size of the input blocks is determined
by the parameters set by the corresponding layer [42],
including the size of the convolution kernel, padding,
and dilation.

• Row-wise local operator. This class of operators re-
quires rows of the input tensor and are widely used in
layers associated with matrix operations, such as ad-
dition [64] and multiplication [12]. The rows required
for computation, ensuring that the correct input is ob-
tained for each local operator to perform its respective
calculation, are determined by the matrix calculation
principles as following:(

𝑎1
...

𝑎𝑚

)
× ( 𝑏1 · · · 𝑏𝑛 ) =

(
𝑐11 · · · 𝑐1𝑛
...

. . .
...

𝑐𝑚1 · · · 𝑐𝑚𝑛

)
Row-wised local operators split the input matrix and
keep a copy of the layer parameter matrix on different

devices, reducing transmission volume and avoiding
the synchronization needed to combine calculation
results from different devices. This is in contrast to TP,
which splits the layer parameter matrix and transfers
a copy of the input matrix to different devices. The
calculation result of row 𝑎1 is (𝑐11 · · · 𝑐1𝑛), which is
also a row and can be directly computed by the next
matrix operation layer. And LOP treats matrices with
only one row as global operators.

After obtaining the required input for each local operator
and the corresponding input position in the previous layer
through the above analysis, LOP determines which local
operators need to be computed in the previous layer to obtain
the input for the current local operator. This establishes
the dependency between local operators, which should be
considered when scheduling local operators in LOSS. Notice
that when the result of an operator is used by several local
operators in the following layer, especially for block-wise
local operators, LOP allows some operators to be repeatedly
computed by the robot and the GPU server, which avoids
synchronization with high transmission costs in robotic IoT
by introducing a small amount of redundant calculation. And
we leave the support for additional types of local operators
as future work.
4.2 Local Operator Scheduling Strategy
LOSS formulates the problem of scheduling local operators
as a nonlinear optimization problem, modeled as follows:

First, we define𝑂𝑃𝑖 as the set of operators in the 𝑖𝑡ℎ layer,
including both local and global operators. When the 𝑖𝑡ℎ layer
is a global operator layer, |𝑂𝑃𝑖 | is 1, as it only has one opera-
tor. We then define𝑋𝑖 ⊆ 𝑂𝑃𝑖 as the set of operators executed
on robots and 𝑌𝑖 ⊆ 𝑂𝑃𝑖 as the set of operators executed on
the GPU server, where 𝑋𝑖 ∪ 𝑌𝑖 = 𝑂𝑃𝑖 . 𝑋𝑖 ∩ 𝑌𝑖 ≠ ∅ when the
result of an operator is used by several local operators in
the following layer, especially for block-wise local operators;
otherwise, 𝑋𝑖 ∩ 𝑌𝑖 = ∅.
Next, we denote the completion time of the 𝑖𝑡ℎ layer on

robots as 𝑇 𝑖
𝑟𝑜𝑏𝑜𝑡

and that on the GPU server as 𝑇 𝑖
𝑠𝑒𝑟 𝑣𝑒𝑟 , as

shown in Fig. 3. We define 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑋 ) as the estimated
computation time of 𝑋 and 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (𝑋 ) as the estimated
transmission time of 𝑋 under the given bandwidth, leading
to the following formula:

𝑇 𝑖
𝑟𝑜𝑏𝑜𝑡

=


𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑋0) 𝑖 = 0
𝑇 𝑖−1
𝑟𝑜𝑏𝑜𝑡

+ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑋𝑖 ) 𝑖 > 0, 𝑀𝑖 = ∅
𝑀𝐴𝑋

(
𝑇 𝑖−1
𝑟𝑜𝑏𝑜𝑡

,𝑇 𝑖−1
𝑠𝑒𝑟𝑣𝑒𝑟+

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (𝑀𝑖 )) + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑋𝑖 ) 𝑖 > 0, 𝑀𝑖 ≠ ∅

𝑇 𝑖
𝑠𝑒𝑟 𝑣𝑒𝑟 =


𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (𝑌0) + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑌0) 𝑖 = 0
𝑇 𝑖−1
𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑌𝑖 ) 𝑖 > 0, 𝑁𝑖 = ∅
𝑀𝐴𝑋

(
𝑇 𝑖−1
𝑠𝑒𝑟𝑣𝑒𝑟 ,𝑇

𝑖−1
𝑟𝑜𝑏𝑜𝑡

+
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (𝑁𝑖 )) + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑌𝑖 ) 𝑖 > 0, 𝑁𝑖 ≠ ∅
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Here, 𝑀𝑖 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑋𝑖 ) − 𝑋𝑖−1 and 𝑁𝑖 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑌𝑖 ) − 𝑌𝑖−1,
where 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑋𝑖 ) is the set of operators found by LOP in the
𝑖 − 1𝑡ℎ layer, whose outputs form the inputs of 𝑋𝑖 . The𝑀𝐴𝑋

function is used to minimize the idle time when combining
the input tensor of this layer, and 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (𝑋 ) includes not
only its own transmission time but also the wait time for the
previous transmission to complete.
Next, we present the corresponding objective function

and constraints of a DNN model with N layers as a nonlinear
optimization problem:

min 𝑇𝑁
𝑟𝑜𝑏𝑜𝑡

(1)
s.t. 𝑀𝑖 = ∅,∀𝑖 ∈ Π (2)

𝑁𝑖 = ∅,∀𝑖 ∈ Π (3)

Here, the layers in Π are those whose output data amounts
are larger than the raw input data. Constraints are inspired
by the key observation used in existing layer partitioning
methods to limit the transmission overhead, which states
that the output data amounts in some intermediate layers of
a DNN model are significantly smaller than that of its raw
input data [17].
LOSS solves the above nonlinear optimization problem

using the differential evolution algorithm [43] and schedules
the computation and transmission of each local operator
based on the obtained solution. It is important to note that
when applying Intra-DP to a special model without any local
operator layers, LOSS will degrade to the existing layer par-
titioning method. When applying Intra-DP to DNN models
with complex structures as directed acyclic graphs (DAGs)
(e.g., MobileNet [47], ResNet [49]), rather than simple chain-
like DNN models (e.g., VGG19 [46]) as above, the 𝑖 − 1𝑡ℎ
layer in the above modeling process should be replaced by
the parent layer in the corresponding DAG.
4.3 Algorithms of Intra-DP
Here, we present the algorithm of Intra-DP for both the client
side on the robot and the server side on the GPU server, as
shown in Fig. 4. The client part is given in Alg. 1 and the
server part is given in Alg. 2. Both sides must first enter the
profile phase and provide the basic information for LOSS
(including the model structure with local and global oper-
ators, and the estimate functions 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 and 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 ),
represented in 𝑖𝑛𝑓 𝑜_𝑟𝑜𝑏𝑜𝑡 and 𝑖𝑛𝑓 𝑜_𝑠𝑒𝑟𝑣𝑒𝑟 . Then, Intra-DP
generates the schedule plan of local operators under various
bandwidths. Compared with the inference time, the solution
of LOSS takes longer to complete, but these profiles are com-
pleted in advance, and only need to select the corresponding
schedule plan according to the actual bandwidth during ac-
tual use. The copy of the model on the GPU server (Fig. 4,
line 1 in Alg. 2) allows Intra-DP to switch among various
schedule plans flexibly.
5 Implementation
We implement Intra-DP on Python and PyTorch. Intra-DP is
easy to use and requires only three lines of code to apply to

Algorithm 1: Intra-DP_client
Input: Data input for inference 𝑖𝑛𝑝𝑢𝑡 ; DNN model𝑚𝑜𝑑𝑒𝑙

Output: The inference result 𝑟𝑒𝑡
Data: input of 𝑖𝑡ℎ layer 𝑍𝑖 ; schedule plan of 𝑖𝑡ℎ layer under

the 𝑏 bandwidth 𝑋𝑏
𝑖
,𝑀𝑏

𝑖
,𝑁𝑏

𝑖

// profile phase on robot

1 𝑖𝑛𝑓 𝑜_𝑟𝑜𝑏𝑜𝑡 = 𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒𝑀𝑜𝑑𝑒𝑙 (𝑚𝑜𝑑𝑒𝑙)
2 𝑆𝑒𝑛𝑑𝑇𝑜𝑆𝑒𝑟𝑣𝑒𝑟 (𝑚𝑜𝑑𝑒𝑙, 𝑖𝑛𝑓 𝑜_𝑟𝑜𝑏𝑜𝑡)
3 𝑋,𝑀, 𝑁 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝑆𝑒𝑟𝑣𝑒𝑟 ()
// inference phase on robot

4 𝑏 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ()
5 𝑍0 = 𝑖𝑛𝑝𝑢𝑡

6 foreach 𝑖𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 do
7 if 𝑀𝑏

𝑖 ≠ ∅ then
8 𝑍𝑖 = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑍𝑖 , 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝑆𝑒𝑟𝑣𝑒𝑟 ())
9 end

10 if 𝑁𝑏
𝑖 ≠ ∅ then

11 𝑆𝑒𝑛𝑑𝑇𝑜𝑆𝑒𝑟𝑣𝑒𝑟 (𝑍𝑖 , 𝑁
𝑏
𝑖 )

12 end
13 if 𝑋𝑏

𝑖 ≠ ∅ and 𝑍𝑖 ≠ ∅ then
14 𝑍𝑖+1 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑍𝑖 , 𝑋

𝑏
𝑖 )

15 end
16 else
17 𝑍𝑖+1 = ∅
18 end
19 end
20 𝑟𝑒𝑡 = 𝑍𝑁+1
21 return 𝑟𝑒𝑡

Figure 5. An example of applying Intra-DP to a VGG19 [46]
model, where “192.168.50.1” is the IP address of the GPU
server.

existing ML applications, as shown in Fig. 5. This is achieved
by hooking around the forward method of the model, and
in the first forward call we profile the model using the de-
fault PyTorch profiler and schedule; then we intercept and
parallelize all the following forward calls as scheduled.
6 Evaluation
Testbed. The evaluation was conducted on a custom four-
wheeled robot (Fig 6a), and a custom air-ground robot(Fig 6b).
They are equipped with a Jetson Xavier NX [38] 8G onboard
computer that is capable of AI model inference with local
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Algorithm 2: Intra-DP_server
Data: input of 𝑖𝑡ℎ layer 𝑍𝑖 ; schedule plan of 𝑖𝑡ℎ layer under

the 𝑏 bandwidth 𝑌𝑏
𝑖
,𝑀𝑏

𝑖
,𝑁𝑏

𝑖

// profile phase on server

1 𝑚𝑜𝑑𝑒𝑙, 𝑖𝑛𝑓 𝑜_𝑟𝑜𝑏𝑜𝑡 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝐶𝑙𝑖𝑒𝑛𝑡 ()
2 𝑖𝑛𝑓 𝑜_𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒𝑀𝑜𝑑𝑒𝑙 (𝑚𝑜𝑑𝑒𝑙)
3 𝑋,𝑌,𝑀, 𝑁 = 𝐿𝑂𝑆𝑆 (𝑖𝑛𝑓 𝑜_𝑟𝑜𝑏𝑜𝑡, 𝑖𝑛𝑓 𝑜_𝑠𝑒𝑟𝑣𝑒𝑟 )
4 𝑆𝑒𝑛𝑑𝑇𝑜𝐶𝑙𝑖𝑒𝑛𝑡 (𝑋,𝑀, 𝑁 )
// inference phase on robot

5 𝑏 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ()
6 𝑍0 = ∅
7 foreach 𝑖𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 do
8 if 𝑀𝑏

𝑖 ≠ ∅ then
9 𝑆𝑒𝑛𝑑𝑇𝑜𝐶𝑙𝑖𝑒𝑛𝑡 (𝑍𝑖 , 𝑀

𝑏
𝑖 )

10 end
11 if 𝑁𝑏

𝑖 ≠ ∅ then
12 𝑍𝑖 = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑍𝑖 , 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝐶𝑙𝑖𝑒𝑛𝑡 ())
13 end
14 if 𝑌𝑏

𝑖 ≠ ∅ and 𝑍𝑖 ≠ ∅ then
15 𝑍𝑖+1 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑍𝑖 , 𝑌

𝑏
𝑖 )

16 end
17 else
18 𝑍𝑖+1 = ∅
19 end
20 end

(a) Four-wheeled robot (b) Air-ground robot

Figure 6. The detailed composition of the robot platforms

inference transmission standby
Power (W) 13.35 4.25 4.04

Table 3. Power consumption (Watt) of our robot in different
states.
computation resources. The system runs Ubuntu 20.04 with
ROS Noetic and a dual-band USB network card (MediaTek
MT76x2U) for wireless connectivity. The Jetson Xavier NX
interfaces with a Leishen N10P LiDAR, ORBBEC Astra depth
camera, and an STM32F407VET6 controller via USB serial
ports. Both LiDAR and depth cameras facilitate environmen-
tal perception, enabling autonomous navigation, obstacle
avoidance, and SLAM mapping. The GPU server is a PC
equipped with an Intel(R) i5 12400f CPU @ 4.40GHz and an
NVIDIA GeForce GTX 2080 Ti 11GB GPU, connected to our

(a) Targeted people (b) Robot moving trajectory

Figure 7. A real-time people-tracking robotic application
on our robot based on a well-known human pose estimation
ML model, Kapao [34].

Figure 8. By predicting occlusions in advance, AGRNav [51]
gains an accurate perception of the environment and avoids
collisions, resulting in efficient and energy-saving paths.

robot via Wi-Fi 6 over 80MHz channel at 5GHz frequency in
our experiments.

Tab. 3 presents the overall on-board energy consumption
(excluding motor energy consumption for robot movement)
of the robot in various states: inference (model inference
with full GPU utilization, including CPU and GPU energy
consumption), transmission (communication with the GPU
server, including wireless network card energy consump-
tion), and standby (robot has no tasks to execute). Notice
that different models, due to varying numbers of parameters,
exhibit distinct GPU utilization rates and power consump-
tion during inference.
Workload.We evaluated two typical real-world robotic

applications on our testbed: Kapao, a real-time people-tracking
application on our four-wheeled robot (Fig 7), and AGRNav,
an autonomous navigation application on our air-ground ro-
bot (Fig 8). These applications feature different model input
and output size patterns: Kapao takes RGB images as input
and outputs key points of small data volume. In contrast,
AGRNav takes point clouds as input and outputs predicted
point clouds and semantics of similar data volume as input,
implying that AGRNav needs to transmit more data during
distributed inference. And we have verified several mod-
els common to mobile devices on a larger scale to further
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corroborate our observations and findings: DenseNet [19],
VGGNet [46], ConvNeXt [53], RegNet [58].

Experiment Environments.Weevaluated two real-world
environments: indoors (robots move in our laboratory with
desks and separators interfering with wireless signals) and
outdoors (robots move in our campus garden with trees and
bushes interfering with wireless signals, resulting in lower
bandwidth). The corresponding bandwidths between the ro-
bot and the GPU server in indoors and outdoors scenarios
are shown in Fig. 2.
Baselines. We selected two SOTA pipeline parallelism

methods as baselines: DSCCS [27], aimed at accelerating
inference, and SPSO-GA [5], focused on optimizing energy
consumption.We set SPSO-GA’s deadline constraints to 1 Hz,
the minimum frequency required for robot movement con-
trol. Given our primary focus on inference time and energy
consumption per inference, we disabled pipeline execution to
concentrate solely on assessing the performance of various
layer partitioning methods.

The evaluation questions are as follows:
• RQ1: How does Intra-DP benefit real-world robotic
applications compared to baseline systems in terms
of inference time and energy consumption?

• RQ2: How sensitive is Intra-DP to bandwidth fluctua-
tion in robotic IoT?

• RQ3: How does Intra-DP perform on models common
to mobile devices on a larger scale?

• RQ4: What are the limitations and potentials of Intra-
DP?

6.1 Inference Time
The upper part of Tab.4 demonstrates that Intra-DP signifi-
cantly reduced Kapao’s inference time compared to SPSO-GA
and DSCCS, both indoors and outdoors. Specifically, Intra-
DP achieved a 16.3% and 14.9% reduction indoors, and a
23.7% and 15% reduction outdoors, compared to SPSO-GA
and DSCCS, respectively. For AGRNav, the performance gain
of Intra-DP and baselines varied, as shown in the lower part
of Tab.4. Intra-DP reduced AGRNav’s inference time by 36.2%
and 27.8% indoors, and 41.1% and 30.8% outdoors, compared
to SPSO-GA and DSCCS, respectively.
Transmission time accounts for up to 70.45% of the total

inference time in SPSO-GA and DSCCS, highlighting the sig-
nificant transmission bottlenecks faced by existing methods
based on the PP paradigm, even with state-of-the-art layer
partitioning. The difference between DSCCS and SPSO-GA
can be attributed to their optimization goals: DSCCS mini-
mizes inference latency, while SPSO-GA minimizes power
consumption under deadline constraints. Intra-DP’s trans-
mission time cannot reach close to 100% of its inference time
because it can only overlap the execution of local opera-
tors, and not all layers in the models of Kapao and AGRNav
are local operator layers. Consequently, Intra-DP can only
parallelize execution in some layers, not all layers.

The large standard deviation in transmission time out-
doors for all systems indicates that bandwidth fluctuated
more frequently and more fiercely outdoors compared to
indoors, which is consistent with the observations in Fig. 2.
Furthermore, the lower average bandwidth for outdoor sce-
narios (see Sec. 2.1) results in increased transmission and
inference times relative to indoor scenarios.
6.2 Energy Consumption
Table 5 presents the power consumption over time and en-
ergy consumption per inference for Kapao and AGRNav us-
ing Intra-DP and baseline methods. Compared to SPSO-GA
and DSCCS, Intra-DP exhibits higher power consumption
over time. This can be attributed to Intra-DP’s computation
at the operator granularity, where finer granularity results
in lower GPU resource utilization and enables repeated com-
putation of certain operators to avoids synchronization in
LOSS.
Despite the higher power consumption over time, Intra-

DP achieves the lowest energy consumption per inference
for both Kapao and AGRNav, primarily due to its shortest
inference time. Intra-DP avoids the need for synchronization
with high transmission costs in robotic IoT by introducing
a small amount of redundant computation. The additional
energy consumed during Intra-DP’s computation phase is
significantly lower than the energy wasted by the prolonged
inference times of SPSO-GA and DSCCS. Although SPSO-
GA aims to optimize energy consumption, its advantages in
power consumption over time diminish when considering
energy consumption per inference due to extended inference
times. This is because SPSO-GA solely focuses onminimizing
power consumption over time, potentially at the cost of
prolonged inference time.
6.3 Micro-Event Analysis

Figure 9. Real-time bandwidth and inference time of Intra-
DP and baselines.

To further investigate Intra-DP’s sensitivity to bandwidth
fluctuations in robotic IoT, we recorded the real-time band-
width and Intra-DP’s corresponding inference time response,
as depicted in Fig. 9. When the bandwidth fluctuates, Intra-
DP’s inference time also fluctuates due to the changing band-
width. However, the amplitude of inference time fluctuation
is significantly smaller than that of bandwidth fluctuation,

10



1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Intra-DP: A High Performance Distributed Inference System on Robotic IoT EuroSys’25, March 2025, ROTTERDAM

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Model(number Local compu- System Transmission time/s Inference time/s Percentage(%)
of parameters) tation time/s indoors outdoors indoors outdoors indoors outdoors

kapao(77M) 1.01(±0.03)
SPSO-GA 0.25(±0.14) 0.31(±0.15) 0.37(±0.24) 0.44(±0.25) 67.56 70.45
DSCCS 0.21(±0.1) 0.24(±0.12) 0.36(±0.2) 0.40(±0.17) 58.33 60.21
Intra-DP 0.24(±0.15) 0.28(±0.13) 0.31(±0.14) 0.34(±0.12) 77.42 82.35

agrnav(0.84M) 0.60(±0.04)
SPSO-GA 0.25(±0.11) 0.35(±0.24) 0.47(±0.21) 0.56(±0.05) 53.19 62.49
DSCCS 0.10(±0.05) 0.15(±0.05) 0.41(±0.11) 0.47(±0.12) 24.39 31.91
Intra-DP 0.24(±0.08) 0.26(±0.07) 0.30(±0.09) 0.33(±0.07) 78.65 79.47

Table 4. Average transmission time, inference time, percentage that transmission time accounts for of inference time and their
standard deviation (±𝑛) of Kapao and AGRNav in different environments with different systems. “Local computation” refers to
inference the entire model locally on the robot.

Model(number System Power consumption(W) Energy consumption(J) per inference
of parameters) indoors outdoors indoors outdoors

kapao(77M)

Local 10.61(±0.49) 10.61(±0.49) 9.79(±0.03) 9.79(±0.03)
SPSO-GA 5.49(±1.52) 5.35(±1.37) 2.03(±0.82) 2.35(±1.04)
DSCCS 6.38(±2.21) 6.63(±2.38) 2.30(±0.55) 2.65(±0.55)
Intra-DP 7.05(±1.63) 6.94(±0.98) 2.19(±0.62) 2.35(±0.42)

agrnav(0.84M)

Local 8.11(±0.25) 8.11(±0.25) 4.86(±0.01) 4.86(±0.01)
SPSO-GA 5.86(±1.60) 7.25(±1.54) 2.75(±0.22) 4.06(±0.57)
DSCCS 6.21(±1.50) 7.29(±1.55) 2.55(±0.19) 3.43(±0.18)
Intra-DP 7.52(±0.51) 8.04(±0.45) 2.26(±0.15) 2.63(±0.15)

Table 5. The power consumption against time (Watt) and energy consumption per inference (Joule) with standard deviation
(±𝑛) of Kapao and AGRNav different environments with different systems. “Local” represents “Local computation”.

Model(number Local compu- System Transmission time/ms Inference time/ms Percentage(%)
of parameters) taion time/ms indoors outdoors indoors outdoors indoors outdoors

DenseNet121(7M) 74.5(±18.7)
SPSO-GA 55.0(±33.7) 66.5(±33.2) 76.7(±36.3) 89.7(±35.5) 71.76 74.15
DSCCS 16.2(±40.9) 20.8(±51.9) 81.4(±27.2) 86.6(±27.7) 19.95 24.07
Intra-DP 53.4(±34.5) 52.9(±23.9) 74.5(±850.7) 55.1(±15.6) 71.70 96.05

RegNet(54M) 175.0(±23.6)
SPSO-GA 55.1(±33.6) 66.7(±33.6) 73.5(±35.9) 86.5(±35.3) 74.90 77.04
DSCCS 47.6(±47.8) 60.5(±54.0) 77.8(±39.3) 86.2(±37.9) 61.22 70.22
Intra-DP 49.6(±21.7) 59.9(±23.4) 55.0(±24.8) 64.2(±25.2) 90.18 93.34

ConvNeXt(88M) 160.2(±21.0)
SPSO-GA 55.4(±33.9) 66.9(±34.9) 73.8(±35.4) 86.7(±36.3) 75.13 77.15
DSCCS 46.9(±43.1) 56.7(±52.1) 72.4(±35.7) 84.7(±36.3) 64.78 66.95
Intra-DP 50.4(±32.2) 61.9(±34.8) 53.9(±26.2) 65.7(±27.7) 93.51 94.23

VGG19(143M) 118.0(±18.9)
SPSO-GA 55.7(±33.5) 67.2(±35.0) 68.8(±33.9) 80.6(±35.0) 80.84 83.33
DSCCS 38.9(±47.1) 41.6(±53.8) 65.2(±28.1) 75.5(±27.1) 59.75 55.09
Intra-DP 44.8(±20.9) 51.5(±15.0) 47.6(±18.1) 53.6(±14.7) 94.15 96.07

ConvNeXt(197M) 316.7(±31.0)
SPSO-GA 57.1(±38.9) 67.1(±34.5) 80.5(±40.8) 90.9(±35.0) 70.87 73.89
DSCCS 56.0(±36.1) 67.0(±37.6) 79.2(±35.9) 90.6(±35.4) 70.72 73.98
Intra-DP 56.4(±34.7) 66.5(±33.7) 59.7(±26.6) 68.0(±26.6) 94.43 97.88

Table 6. Average transmission time, inference time, percentage that transmission time accounts for of inference time and their
standard deviation (±𝑛) of common AI models in different environments with different systems.

thanks to Intra-DP’s ability to flexibly switch between sched-
uling plans. Intra-DP generates scheduling plans for different
bandwidths based on possible bandwidth fluctuation ranges
in advance and adopts the corresponding scheduling plan
based on the predicted bandwidth during the inference phase.
This approach enables Intra-DP to adapt to varying network

conditions and maintain stable performance, even in the
presence of bandwidth fluctuations.
6.4 Validation on a larger range of models
We evaluated Intra-DP and baselines on a wide range of
models commonly used in mobile devices, with parameter
counts varying (detailed in Tab. 6 and Tab. 7). Our results
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Model(number System Power consumption(W) Energy consumption(J) per inference
of parameters) indoors outdoors indoors outdoors

DenseNet121(7M)

Local 8.2(±0.27) 8.2(±0.27) 0.46(±0.04) 0.46(±0.04)
SPSO-GA 4.87(±0.23) 4.74(±0.19) 0.37(±0.02) 0.42(±0.02)
DSCCS 6.91(±0.45) 6.86(±0.46) 0.56(±0.04) 0.59(±0.04)
Intra-DP 5.36(±0.79) 5.79(±0.24) 0.4(±0.06) 0.32(±0.01)

RegNet(54M)

Local 9.0(±0.3) 9.0(±0.3) 1.37(±0.02) 1.37(±0.02)
SPSO-GA 4.83(±0.21) 4.8(±0.18) 0.36(±0.02) 0.41(±0.02)
DSCCS 5.84(±1.79) 5.36(±1.34) 0.45(±0.14) 0.46(±0.12)
Intra-DP 5.24(±1.43) 5.28(±1.52) 0.29(±0.08) 0.34(±0.1)

ConvNeXt(88M)

Local 9.7(±0.34) 9.7(±0.34) 1.34(±0.02) 1.34(±0.02)
SPSO-GA 4.93(±0.25) 4.78(±0.18) 0.36(±0.02) 0.41(±0.02)
DSCCS 6.01(±0.27) 5.71(±1.56) 0.439(±0.05) 0.48(±0.13)
Intra-DP 6.68(±1.23) 6.68(±1.21) 0.36(±0.07) 0.44(±0.08)

VGG19(143M)

Local 9.78(±0.34) 9.78(±0.34) 0.95(±0.02) 0.95(±0.02)
SPSO-GA 4.9(±0.25) 4.82(±0.2) 0.34(±0.02) 0.39(±0.02)
DSCCS 6.58(±2.14) 6.93(±2.35) 0.43(±0.14) 0.52(±0.18)
Intra-DP 6.51(±1.74) 7.32(±1.52) 0.31(±0.08) 0.39(±0.08)

ConvNeXt(197M)

Local 10.72(±0.38) 10.72(±0.38) 3.12(±0.03) 3.12(±0.03)
SPSO-GA 5.1(±0.27) 4.99(±0.2) 0.41(±0.02) 0.45(±0.02)
DSCCS 5.06(±0.31) 5.02(±0.37) 0.4(±0.02) 0.45(±0.03)
Intra-DP 4.57(±0.23) 4.54(±0.25) 0.27(±0.01) 0.31(±0.02)

Table 7. The power consumption against time (Watt) and energy consumption per inference (Joule) with standard deviation
(±𝑛) of common AI models in different environments with different systems. “Local” represents “Local computation”.

confirm that transmission time constitutes a significant por-
tion of the total inference time in both DSCCS and SPSO-GA,
leading to wasteful inference time and energy consumption
compared to Intra-DP. Although Intra-DP’s outperformance
remains consistent across various models, we observed that
the performance gain is relatively smaller on models with
fewer parameters. This is because Intra-DP’s performance
improvement is primarily achieved through the parallel ex-
ecution of local operators. When a model employs more
global operator layers or has fewer parameters, the number
of local operators available for parallel execution is reduced,
limiting the optimization potential for Intra-DP to enhance
performance.
6.5 Lessons learned
Global optimal solution. The performance of Intra-DP
heavily depends on the quality of the solution obtained by
LOSS, with higher solution quality (closer to the global op-
timal solution) leading to better performance. However, as
DNNmodels become increasingly complex with more layers,
the nonlinear optimization problem in LOSS faces exponen-
tially higher parameter dimensions and complexity, result-
ing in unacceptable profile times. Solving the global optimal
solution of nonlinear optimization problems in finite time
remains an open issue, and finding a fast and high-quality
solution algorithm for Intra-DP is left for future work.

Model structure. During the implementation and evalu-
ation of Intra-DP, we discovered that the presence of more
local operator layers allows for increased parallel execution

during model inference, thereby enhancing the performance
improvement of Intra-DP. Future work should focus on sup-
porting additional types of local operators and exploring
the possibility of transforming global operators into local
ones through lightweight synchronization techniques, based
on their computational characteristics (e.g., synchronize the
sum results in softmax instead of directly transferring the
full input tensor and re-calculating).

Future work. It is of interest to explore further improve-
ments of Intra-DP, such as a distributed inference system
for multi-robot to minimize overall inference time and en-
ergy consumption. Such advancements could enable faster
and more robust wireless distributed inference in real-world
robotic IoT.
7 Conclusion
In this paper we present Intra-DP, a high-performance dis-
tributed inference system optimized for robotic IoT networks.
By breaking up the granularity of model inference into lo-
cal operators via LOP and applying adaptive scheduling to
the computation and transmission of each local operator
via LOSS, Intra-DP dramatically reduces the transmission
overhead in existing distributed inference on robotic IoT
by overlapping the computation and transmission phases
within the same inference task, achieving fast and energy-
efficient distributed inference. We envision that the fast and
energy-efficient inference of Intra-DP will foster the real-
world deployment of diverse AI robotic tasks in the field.

12



1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Intra-DP: A High Performance Distributed Inference System on Robotic IoT EuroSys’25, March 2025, ROTTERDAM

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

References
[1] [n. d.]. iPerf - Download iPerf3 and original iPerf pre-compiled binaries.

https://iperf.fr/iperf-download.php
[2] Toni Adame, Marc Carrascosa-Zamacois, and Boris Bellalta. 2021.

Time-sensitive networking in IEEE 802.11 be: On the way to low-
latency WiFi 7. Sensors 21, 15 (2021), 4954.

[3] Majid Altamimi, Atef Abdrabou, Kshirasagar Naik, and Amiya Nayak.
2015. Energy cost models of smartphones for task offloading to the
cloud. IEEE Transactions on Emerging Topics in Computing 3, 3 (2015),
384–398.

[4] Anh-Quan Cao and Raoul de Charette. 2022. Monoscene: Monoc-
ular 3d semantic scene completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3991–4001.

[5] Xing Chen, Jianshan Zhang, Bing Lin, Zheyi Chen, Katinka Wolter,
and Geyong Min. 2021. Energy-efficient offloading for DNN-based
smart IoT systems in cloud-edge environments. IEEE Transactions on
Parallel and Distributed Systems 33, 3 (2021), 683–697.

[6] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion
Stoica, JosephGonzalez, andAlexey Tumanov. 2020. InferLine: latency-
aware provisioning and scaling for prediction serving pipelines. In
Proceedings of the 11th ACM Symposium on Cloud Computing. 477–491.

[7] Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and
Guergana Petrova. 2022. Nonlinear approximation and (deep) ReLU
networks. Constructive Approximation 55, 1 (2022), 127–172.

[8] Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve. 2021. Differ-
entiable model compression via pseudo quantization noise. arXiv
preprint arXiv:2104.09987 (2021).

[9] MingDing, PengWang, David López-Pérez, GuoqiangMao, and Zihuai
Lin. 2015. Performance impact of LoS and NLoS transmissions in dense
cellular networks. IEEE Transactions on Wireless Communications 15,
3 (2015), 2365–2380.

[10] Khalid Elgazzar, Patrick Martin, and Hossam S Hassanein. 2014. Cloud-
assisted computation offloading to support mobile services. IEEE
Transactions on Cloud Computing 4, 3 (2014), 279–292.

[11] Zhou Fang, Tong Yu, Ole J Mengshoel, and Rajesh K Gupta. 2017.
Qos-aware scheduling of heterogeneous servers for inference in deep
neural networks. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. 2067–2070.

[12] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. 2004. Un-
derstanding the efficiency of GPU algorithms for matrix-matrix mul-
tiplication. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. 133–137.

[13] S, tefan Gheorghe and Mihai Ivanovici. 2021. Model-based weight
quantization for convolutional neural network compression. In 2021
16th International Conference on Engineering of Modern Electric Systems
(EMES). IEEE, 1–4.

[14] Cheng Gong, Yao Chen, Ye Lu, Tao Li, Cong Hao, and Deming Chen.
2020. VecQ: Minimal loss DNN model compression with vectorized
weight quantization. IEEE Trans. Comput. 70, 5 (2020), 696–710.

[15] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.
2021. Knowledge distillation: A survey. International Journal of Com-
puter Vision 129, 6 (2021), 1789–1819.

[16] Vinayak Honkote, Dileep Kurian, Sriram Muthukumar, Dibyendu
Ghosh, Satish Yada, Kartik Jain, Bradley Jackson, Ilya Klotchkov,
Mallikarjuna Rao Nimmagadda, Shreela Dattawadkar, et al. 2019. 2.4
a distributed autonomous and collaborative multi-robot system fea-
turing a low-power robot soc in 22nm cmos for integrated battery-
powered minibots. In 2019 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 48–50.

[17] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. 2019. Dynamic
adaptive DNN surgery for inference acceleration on the edge. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE,
1423–1431.

[18] Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A Beerel,
Stephen P Crago, and John Paul Walters. 2022. Pipeedge: Pipeline
parallelism for large-scale model inference on heterogeneous edge
devices. In 2022 25th Euromicro Conference on Digital System Design
(DSD). IEEE, 298–307.

[19] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. 2018. Densely Connected Convolutional Networks.
arXiv:1608.06993 [cs.CV]

[20] Glenn Jocher, Alex Stoken, Jirka Borovec, Liu Changyu, Adam Hogan,
Ayush Chaurasia, Laurentiu Diaconu, Francisco Ingham, Adrien Col-
magro, Hu Ye, et al. 2021. ultralytics/yolov5: v4. 0-nn. SiLU () activa-
tions, Weights & Biases logging, PyTorch Hub integration. Zenodo
(2021).

[21] K J Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasub-
ramanian. 2021. Towards OpenWorld Object Detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 5830–5840.

[22] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collabora-
tive intelligence between the cloud and mobile edge. ACM SIGARCH
Computer Architecture News 45, 1 (2017), 615–629.

[23] Nam Sung Kim, Todd Austin, David Baauw, Trevor Mudge, Krisztián
Flautner, Jie S Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykr-
ishnan Narayanan. 2003. Leakage current: Moore’s law meets static
power. computer 36, 12 (2003), 68–75.

[24] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R
Tallent, and Kevin J Barker. 2019. Evaluating modern gpu interconnect:
Pcie, nvlink, nv-sli, nvswitch and gpudirect. IEEE Transactions on
Parallel and Distributed Systems 31, 1 (2019), 94–110.

[25] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok.
2020. Graph neural networks for decentralized multi-robot path plan-
ning. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 11785–11792.

[26] Yiming Li, Zhiding Yu, Christopher Choy, Chaowei Xiao, Jose M Al-
varez, Sanja Fidler, Chen Feng, and Anima Anandkumar. 2023. Vox-
former: Sparse voxel transformer for camera-based 3d semantic scene
completion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 9087–9098.

[27] Huanghuang Liang, Qianlong Sang, Chuang Hu, Dazhao Cheng, Xi-
aobo Zhou, Dan Wang, Wei Bao, and Yu Wang. 2023. DNN surgery:
Accelerating DNN inference on the edge through layer partitioning.
IEEE transactions on Cloud Computing (2023).

[28] Bing Lin, Yinhao Huang, Jianshan Zhang, Junqin Hu, Xing Chen, and
Jun Li. 2019. Cost-driven off-loading for DNN-based applications
over cloud, edge, and end devices. IEEE Transactions on Industrial
Informatics 16, 8 (2019), 5456–5466.

[29] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020.
Ensemble distillation for robust model fusion in federated learning.
Advances in Neural Information Processing Systems 33 (2020), 2351–
2363.

[30] Ruofeng Liu and Nakjung Choi. 2023. A First Look atWi-Fi 6 in Action:
Throughput, Latency, Energy Efficiency, and Security. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 7, 1
(2023), 1–25.

[31] Shuai Liu, Xin Li, Huchuan Lu, and You He. 2022. Multi-Object Track-
ing Meets Moving UAV. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 8876–8885.

[32] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. 2016. Large-
margin softmax loss for convolutional neural networks. arXiv preprint
arXiv:1612.02295 (2016).

[33] Antoni Masiukiewicz. 2019. Throughput comparison between the new
HEW 802.11 ax standard and 802.11 n/ac standards in selected distance
windows. International Journal of Electronics and Telecommunications
65, 1 (2019), 79–84.

13

https://iperf.fr/iperf-download.php
https://arxiv.org/abs/1608.06993


1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

EuroSys’25, March 2025, ROTTERDAM Anon. Submission Id: 445

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

[34] William McNally, Kanav Vats, Alexander Wong, and John McPhee.
2022. Rethinking keypoint representations: Modeling keypoints and
poses as objects for multi-person human pose estimation. In European
Conference on Computer Vision. Springer, 37–54.

[35] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario
Di Francesco. 2020. Distributed inference acceleration with adap-
tive DNN partitioning and offloading. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 854–863.

[36] DeepakNarayanan,Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient
large-scale language model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–15.

[37] Mohammad Noormohammadpour and Cauligi S Raghavendra. 2017.
Datacenter traffic control: Understanding techniques and tradeoffs.
IEEE Communications Surveys & Tutorials 20, 2 (2017), 1492–1525.

[38] NVIDIA. 2024. The World’s Smallest AI Supercomputer.
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-series/.

[39] Takeshi Ohkawa, Kazushi Yamashina, Hitomi Kimura, Kanemitsu
Ootsu, and Takashi Yokota. 2018. FPGA components for integrating
FPGAs into robot systems. IEICE TRANSACTIONS on Information and
Systems 101, 2 (2018), 363–375.

[40] Yuanteng Pei, Matt W Mutka, and Ning Xi. 2013. Connectivity and
bandwidth-aware real-time exploration in mobile robot networks.
Wireless Communications and Mobile Computing 13, 9 (2013), 847–
863.

[41] pytorch. 2024. pytroch. https://pytorch.org/.
[42] pytorch. 2024. pytroch. https://pytorch.org/docs/stable/generated/

torch.nn.Conv2d.html.
[43] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. 2008.

Differential evolution algorithm with strategy adaptation for global
numerical optimization. IEEE transactions on Evolutionary Computa-
tion 13, 2 (2008), 398–417.

[44] Yi Ren, Chih-Wei Tung, Jyh-Cheng Chen, and Frank Y Li. 2018. Propor-
tional and preemption-enabled traffic offloading for IP flow mobility:
Algorithms and performance evaluation. IEEE Transactions on Vehicu-
lar Technology 67, 12 (2018), 12095–12108.

[45] Nurul I Sarkar and OsmanMussa. 2013. The effect of people movement
onWi-Fi link throughput in indoor propagation environments. In IEEE
2013 Tencon-Spring. IEEE, 562–566.

[46] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

[47] Debjyoti Sinha and Mohamed El-Sharkawy. 2019. Thin mobilenet: An
enhanced mobilenet architecture. In 2019 IEEE 10th annual ubiquitous
computing, electronics & mobile communication conference (UEMCON).
IEEE, 0280–0285.

[48] Luna Sun, Zhenxue Chen, QM Jonathan Wu, Hongjian Zhao, Weikai
He, and Xinghe Yan. 2021. AMPNet: Average-and max-pool networks
for salient object detection. IEEE Transactions on Circuits and Systems
for Video Technology 31, 11 (2021), 4321–4333.

[49] Sasha Targ, Diogo Almeida, and Kevin Lyman. 2016. Resnet in resnet:
Generalizing residual architectures. arXiv preprint arXiv:1603.08029
(2016).

[50] HaoWang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Sayantan
Sur, and Dhabaleswar K Panda. 2011. MVAPICH2-GPU: optimized
GPU to GPU communication for InfiniBand clusters. Computer Science-
Research and Development 26, 3 (2011), 257–266.

[51] Junming Wang, Zekai Sun, Xiuxian Guan, Tianxiang Shen, Zongyuan
Zhang, Tianyang Duan, Dong Huang, Shixiong Zhao, and Heming Cui.
2024. AGRNav: Efficient and Energy-Saving Autonomous Navigation
for Air-Ground Robots in Occlusion-Prone Environments. In IEEE

International Conference on Robotics and Automation (ICRA).
[52] Lin Wang and Kuk-Jin Yoon. 2021. Knowledge distillation and student-

teacher learning for visual intelligence: A review and new outlooks.
IEEE transactions on pattern analysis and machine intelligence 44, 6
(2021), 3048–3068.

[53] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen,
Zhuang Liu, In So Kweon, and Saining Xie. 2023. Convnext v2: Co-
designing and scaling convnets with masked autoencoders. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 16133–16142.

[54] Huaming Wu, William J Knottenbelt, and Katinka Wolter. 2019. An
efficient application partitioning algorithm in mobile environments.
IEEE Transactions on Parallel and Distributed Systems 30, 7 (2019),
1464–1480.

[55] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long
Han, and Yang Tang. 2023. A brief overview of ChatGPT: The history,
status quo and potential future development. IEEE/CAA Journal of
Automatica Sinica 10, 5 (2023), 1122–1136.

[56] Zhaoyang Xia, Youquan Liu, Xin Li, Xinge Zhu, Yuexin Ma, Yikang Li,
Yuenan Hou, and Yu Qiao. 2023. SCPNet: Semantic Scene Completion
on Point Cloud. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 17642–17651.

[57] Yecheng Xiang and Hyoseung Kim. 2019. Pipelined data-parallel
CPU/GPU scheduling for multi-DNN real-time inference. In 2019 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 392–405.

[58] Jing Xu, Yu Pan, Xinglin Pan, Steven Hoi, Zhang Yi, and Zenglin Xu.
2022. RegNet: self-regulated network for image classification. IEEE
Transactions on Neural Networks and Learning Systems (2022).

[59] Min Xue, Huaming Wu, Guang Peng, and Katinka Wolter. 2021.
DDPQN: An efficient DNN offloading strategy in local-edge-cloud
collaborative environments. IEEE Transactions on Services Computing
15, 2 (2021), 640–655.

[60] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian, Xingyao Li, Zhiming He,
Xudong Wu, Xianlong Wang, Yunhao Liu, Zhi Liao, et al. 2022. Mobile
access bandwidth in practice: Measurement, analysis, and implications.
In Proceedings of the ACM SIGCOMM 2022 Conference. 114–128.

[61] Yang Yang, Li Juntao, and Peng Lingling. 2020. Multi-robot path
planning based on a deep reinforcement learning DQN algorithm.
CAAI Transactions on Intelligence Technology 5, 3 (2020), 177–183.

[62] Xinyou Yin, JAN Goudriaan, Egbert A Lantinga, JAN Vos, and Huub J
Spiertz. 2003. A flexible sigmoid function of determinate growth.
Annals of botany 91, 3 (2003), 361–371.

[63] Chaoqun Yue, Ruofan Jin, Kyoungwon Suh, Yanyuan Qin, Bing Wang,
and Wei Wei. 2017. LinkForecast: Cellular link bandwidth prediction
in LTE networks. IEEE Transactions on Mobile Computing 17, 7 (2017),
1582–1594.

[64] Anthony Zee. 1996. Law of addition in random matrix theory. Nuclear
Physics B 474, 3 (1996), 726–744.

[65] Yonghao Zhuang, Hexu Zhao, Lianmin Zheng, Zhuohan Li, Eric Xing,
Qirong Ho, Joseph Gonzalez, Ion Stoica, and Hao Zhang. 2023. On
optimizing the communication of model parallelism. Proceedings of
Machine Learning and Systems 5 (2023).

14

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://arxiv.org/abs/1409.1556

	Abstract
	1 Introduction
	2 Background
	2.1 Characteristics of Robotic IoT
	2.2 Characteristics of Data Center Networks
	2.3 Existing distributed inference methods in the data center
	2.4 Other methods to speed up DNN Models Inference on Robotic IoT

	3 Overview
	3.1 Workflow of Intra-DP
	3.2 Architecture of Intra-DP

	4 Detailed Design
	4.1 Local Operator Parallelism
	4.2 Local Operator Scheduling Strategy
	4.3 Algorithms of Intra-DP

	5 Implementation
	6 Evaluation
	6.1 Inference Time
	6.2 Energy Consumption
	6.3 Micro-Event Analysis
	6.4 Validation on a larger range of models
	6.5 Lessons learned

	7 Conclusion
	References

