Intra-DP: A High Performance Distributed Inference System on Robotic IoT

Anonymous Author(s)
Submission Id: 273

Abstract

Deep Neural Networks (DNNs) have been widely employed
in various robotic applications, necessitating fast and energy-
efficient inference when deployed on robots. Distributed in-
ference, which leverages a GPU server to accelerate inference
on the robot via the Internet of Things for robots (robotic
IoT), has emerged as a promising approach to achieve this
goal. However, the three main parallel computing techniques
used in modern data centers, namely data parallelism (DP),
tensor parallelism (TP), and pipeline parallelism (PP), are
ill-suited for robotic IoT. DP and TP are inapplicable due to
the real-time demands of robotic applications and the lim-
ited bandwidth of robotic IoT, while PP-based approaches
still face significant transmission bottlenecks caused by the
sequential execution of DNN operations.

To address these challenges, we present Intra-DP, a high-
performance distributed inference system optimized for DNN
inference on robotic IoT. Intra-DP employs a novel parallel
computing technique based on local operators (i.e., operators
whose minimum unit input is not the entire input tensor, such
as the convolution kernel). By cutting their operations into
several independent sub-operations and overlapping the com-
putation and transmission of different sub-operations through
parallel execution, Intra-DP significantly mitigates transmis-
sion bottlenecks in robotic IoT, achieving fast and energy-
efficient inference. The evaluation demonstrates that Intra-DP
reduced inference time by 5% to 61% and energy consump-
tion per inference by up to 72% compared to baselines.

1 Introduction

Deep Neural Networks (DNNs) have been widely employed
in various robotic tasks, leading to remarkable achievements
in fundamental areas such as object detection [25, 37,42],
robotic control [30, 60, 69], and environmental perception [0,
31, 64]. However, deploying these applications onto real-
world robots presents new challenges due to the demand for
swift responses and the limited battery capacity of robots. A
straightforward approach of placing an entire model on robots

with computing accelerators (e.g., GPU [47], FPGA [48],
SoC [19]) introduces significant energy consumption, with an
average of 70% energy consumption observed on our robot.

Distributed inference, which leverages a GPU server (e.g.,
edge device with powerful GPU) to accelerate inference on
the robot via the Internet of Things for robots (robotic IoT),
has emerged as a promising approach to provide fast and
energy-efficient inference. Various parallel methods have
been proposed and proven efficient when deployed in modern
data centers [21,65,75]. The three main parallel computing
techniques in data centers are data parallelism (DP), which
replicates the model across devices and allows each replica to
handle a mini-batch (i.e., a subset of the input data set); tensor
parallelism (TP), which splits a single layer of the model over
devices; and pipeline parallelism (PP), which distributes dif-
ferent layers of the model across devices (layer partitioning)
and pipelines the inference to minimize devices’ idling time
(pipeline execution).

However, all three parallel computing techniques in data
centers are ill-suited for robotic IoT. Specifically, DP is gen-
erally limited by the total batch size [44]. In data centers, DP
is feasible due to the large batch sizes employed (e.g., 16
images), allowing for the division of inputs into mini-batches
that still contain several complete inputs (e.g., 2 images). How-
ever, in robotic [oT, real-time performance is crucial, neces-
sitating immediate inference upon receiving inputs, which
typically have smaller batch sizes (e.g., 1 image). Further
splitting these inputs would result in mini-batches containing
incomplete inputs (e.g., 1/4 of an image). As a result, DP is
inapplicable for robotic applications.

Meanwhile, TP generally allows concurrent computation
on different parts of a model layer across devices but requires
an all-reduce communication [75] to combine computation re-
sults. Thus, TP potentially entails significant communication
overhead (Fig. 1). Robots must prioritize seamless mobility
and primarily depend on wireless connections with limited
bandwidth (Sec. 2.1), making all-reduce synchronization an
unacceptable overhead. Our evaluation in Sec. 2.2 confirms
that such communication overhead in robotic IoT dramati-



cally slows down the entire inference process, resulting in
inference times up to 143.9x slower than local computation.

Besides DP and TP, PP that conducts layer partitioning and
pipeline execution seems a promising approach for robotic
applications and has been implemented in various existing
methods in robotic IoT [5,8,20,23,32,43,67,74]. However,
all these methods face significant transmission bottlenecks
in robotic IoT. First, PP typically involves three sequential
phases according to its layer partitioning: computing early lay-
ers on robots, transmitting intermediate results, and complet-
ing inference on GPU servers. Our experiments demonstrate
that the transmission overhead due to the limited bandwidth
of robotic IoT can become a substantial bottleneck despite
advanced layer partitioning strategies [8,32] (e.g., accounting
for up to 44.2% of inference time). Second, pipeline execu-
tion (i.e., overlapping computation and transmission phases
across multiple inference tasks) cannot effectively mitigate
the overhead since it only enhances throughput rather than
reducing the completion time of a single inference task [9],
which is critical to robotic applications.

The primary reason why existing methods suffer from sig-
nificant transmission bottlenecks lies in their sequential ex-
ecution of DNN operations. Each model layer contains one
or several operators, and the DNN needs to execute the op-
erators in a fixed order according to the model structure to
obtain the correct inference result. Existing methods treat
each calculation of an operator as an operation (e.g., the con-
volution operation for a convolution kernel), forcing them to
execute DNN operations sequentially. As a result, this sequen-
tial execution of DNN operations constrains them to follow
the three sequential phases of PP, which leads to significant
transmission bottlenecks in robotic IoT.

Our key observation is that local operators, whose min-
imum unit input is not the entire input tensor, provide the
opportunity for parallel execution of DNN operations. Unlike
global operators that require the entire input tensor (e.g., soft-
max [38] requires it to calculate the corresponding probability
distribution), local operators can be computed with smaller
input units (the elements in the input tensor for ReLU [10] and
the blocks in the input tensor for convolution [43]). We treat
each calculation of the local operator based on its minimum
input unit as a local operation. When traditional methods treat
the calculation of a local operator as a whole DNN operation,
we cut the calculation of the local operator into several inde-
pendent local operations, enabling their parallel execution.

In this paper, we present Intra-DP (Intra-Data Parallel),
a high-performance distributed inference system optimized
for real-world robotic IoT. Intra-DP employs a novel parallel
computing technique based on local operators and overlaps
the computation and transmission of different local operations
through parallel execution. This overlapping not only enables
fast inferences by dramatically reducing idle time on the
robot but also decreases overall energy consumption. This is
because the main energy consumption during the idle time on
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Figure 1: Workflow of TP, PP and LOP. In the three cases above,
each local operator has three local operations with identical compu-
tation times on the robot and GPU server, as well as corresponding
transmission time. See more details in Sec. 3.1.

the robot comes from chips like CPU, GPU, and memory (e.g.,
95% energy consumption in our experiments) rather than the
network cards. This new parallel computing technique only
slightly increases the energy consumption of network cards
during the computation phase while dramatically reducing
idle time, ultimately leading to a decrease in overall energy
consumption.

The design of Intra-DP is confronted with two major chal-
lenges. The first one is how to guarantee the correctness of
inference results based on local operators. We propose Local
Operation Parallelism (LOP) that determines data dependen-
cies among local operations, where the output of one local
operation serves as the input for another. For local opera-
tors, Intra-DP only changes the execution sequence of local
operations and ensures each local operation gets the correct
input (raw input or the output from the previous operation)
according to its data dependency and the calculation logic of
the local operator. For global operators, Intra-DP enforces a
synchronization before them to combine the complete input,
as TP’s all-reduce communications do. By ensuring that all
operations still receive the correct input, Intra-DP guarantees
the calculation correctness of both local operators and global
operators.

The second challenge is how to properly schedule the com-
putation and transmission of each local operation to achieve
fast and energy-efficient inference. Intra-DP addresses this
challenge by introducing a novel Local Operation Schedul-
ing Strategy (LOSS) that determines the partitioning of local
operations between the robot and GPU server while consid-
ering the transmission cost of LOP. LOSS formulates this
problem as a nonlinear optimization problem (Sec. 4.2) and
schedules the computation and transmission of each local
operation based on the solution obtained via the differential
evolution algorithm [52]. Moreover, Intra-DP allows the re-



calculation of some local operations (letting them compute
simultaneously on both the robot and GPU server, thus reduc-
ing the data transmission required by LOP), which greatly
reduces the expensive transmission in robotic IoT by slightly
increasing the redundant computation, ultimately optimizing
the overall performance.

We implemented Intra-DP in PyTorch [50] and evaluated
Intra-DP on our real-world robot under two typical real-world
robotic applications [42, 60] and several models common to
mobile devices on a larger scale [55, 56, 58, 62,66]. We com-
pared Intra-DP with four baselines under different real-world
robotic [oT network environments (namely indoors and out-
doors): local computation, which places entire model on the
robot; all offload, which places entire model on GPU server;
and two advanced PP methods: DSCCS [32], aimed at accel-
erating inference, and SPSO-GA [8], focused on optimizing
energy consumption. Our evaluation shows that:

¢ Intra-DP is fast. Intra-DP reduced inference time by
5% to 61% compared to baselines under indoors and
outdoors environments.

e Intra-DP is energy-efficient. Intra-DP reduced up to 72%
energy consumption per inference compared to base-
lines, due to faster inference speed and limited-increased
energy consumption per unit time.

¢ Intra-DP is robust in various robotic IoT environments.
When the robotic IoT environment changed (from in-
doors to outdoors), Intra-DP’s superior performance re-
mained consistent.

¢ Intra-DP is easy to use. It took only three lines of code
to apply Intra-DP to existing robotic applications.

Our main contributions are LOP, a novel parallel comput-
ing technique based on local operators, and LOSS, a new
scheduling strategy based on LOP optimized for DNN infer-
ence in robotic IoT. By leveraging LOP and LOSS, Intra-DP
significantly mitigates transmission bottlenecks in robotic
IoT by overlapping the computation and transmission of
different local operations through parallel execution, achiev-
ing fast and energy-efficient distributed inference. We envi-
sion that the fast and energy-efficient inference of Intra-DP
will foster the deployment of diverse robotic tasks on real-
world robots in the field, enabling the widespread adoption
of advanced machine learning techniques in robotic applica-
tions. Intra-DP’s code is released on https://github.com/
nsdi25paper273/intraDP.

2 Background
2.1 Characteristics of Robotic IoT

In real-world scenarios, robots frequently navigate and move
around to execute tasks such as search and exploration, rely-
ing on wireless networks that offer high mobility. However,
these networks often have limited bandwidth, due to both
the theoretical upper limit of wireless transmission technolo-

gies and the practical instability of wireless networks. For
instance, the most advanced Wi-Fi technology, Wi-Fi 6, of-
fers a maximum theoretical bandwidth of 1.2 Gbps for a
single stream [36]. However, the limited hardware resources
on robots often prevent them from fully utilizing the potential
of Wi-Fi 6 [68]. Moreover, the actual available bandwidth of
wireless networks is often reduced in practice due to various
factors, such as the movement of devices [41,49], occlusion
by physical barriers [12,54], and preemption of the wireless
channel by other devices [2,53].

To demonstrate the instability of wireless transmission in
real-world situations, we conducted a robot surveillance ex-
periment using four-wheel robots navigating around several
given points at 5-40cm/s speed in our lab (indoors) and cam-
pus garden (outdoors), with hardware and wireless network
settings as described in Sec. 6. We utilized iperf [1] to satu-
rate the wireless transmission between our robot and a base
station, thereby measuring the real-time maximum wireless
bandwidth capacity and recording these values every 0.1 sec-
onds over a period of 5 minutes.
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Figure 2: The instability of wireless transmission between our robot

and a base station in robotic IoT networks.

The results in Fig. 2 show average bandwidth capacities
of 93 Mbps and 73 Mbps for indoor and outdoor scenarios,
respectively. The outdoor environment exhibited higher insta-
bility, with bandwidth frequently dropping to extremely low
values around 0 Mbps, due to the lack of walls to reflect wire-
less signals and the presence of obstacles like trees between
communicating robots, resulting in fewer received signals
compared to indoor environments. It is important to note that
the bandwidth in real-world robotic IoT networks is relatively
minimal compared to data center networks, where devices are
equipped with high-speed networking technologies such as
InfiniBand [46] or PClIe [29], offering bandwidths ranging
from 40 Gbps to 500 Gbps.

2.2 Related distributed inference methods

Tensor parallelism. We evaluated DINA, a state-of-the-art
tensor parallelism (TP) method, on the same testbed as Sec. 6.
The results in Tab. | show that transmission time takes up
49% to 94% of the total inference time due to all-reduce
communication for each layer, making TP’s inference time is
45.2x to 143.9x longer than local computation. Although TP
has lower energy consumption per unit time (13.4% to 67.3%
less than local computation), the extended transmission times
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Model(number . Transmission Inference Energy consumption | Energy consumption
Environment . . .. .
of parameters time(s) time(s) per unit time(W) per inference(J)
Local 0.000(£0.000) | 0.031(40.0004) 6.05(4+0.21) 0.30(40.09)
MobileNet(2M) TP-indoors | 0.698(£0.135) | 1.400(40.232) 5.24(40.19) 7.33(+1.21)
TP-outdoors | 0.901(£0.778) | 1.775(£1.370) 5.11(4£0.28) 9.08(+7.00)
Local 0.000(£0.000) | 0.065(40.0005) 11.27(£0.51) 0.93(40.19)
ResNet101(44M)  TP-indoors | 7.156(+£3.348) | 8.106(+£3.403) 4.97(4£0.16) 40.28(£16.91)
TP-outdoors | 8.470(£6.337) | 9.356(+£6.328) 4.90(+0.23) 45.8(+30.98)
Local 0.000(£0.000) | 0.063(40.0002) 14.86(£0.43) 1.19(40.18)
VGG19(143M) TP-indoors | 5.152(+4.873) | 5.444(44.831) 4.88(+0.29) 26.55(£23.56)
TP-outdoors | 5.407(£6.673) | 5.759(+£6.635) 4.87(+0.27) 28.06(+£32.33)

Table 1: Average transmission time (Second), inference time (Second), energy consumption per unit time (Watt) and energy consumption per
inference (Joule), along with the standard deviation (+n), for TP on different models in different environments. “Local” refers to place entire

model on the robot.
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Figure 3: The performance of PP with various layer partitioning
strategies on VGG19 [55]. The X-axis represents different layer
partitioning strategies, where “layer i” indicates that all layers up
to and including the i, layer are computed on the robot, while the
subsequent layers are processed on the GPU server. It is worth noting
that “layer 0™ also represents the all offload method, as it places all
layers of the model onto the GPU server, and different network
bandwidths will result in varying transmission costs under the same
layer partitioning strategy.

significantly increase energy consumption per inference by
28.5% to 62.7x. Although there have been efforts to reduce
the communication overhead of TP in data centers, such as
distributing each layer along both the spatial and temporal
dimensions [59], these methods remain ineffective in robotic
IoT. This is because they still require all-reduce communica-
tion to combine computation results from different devices,
while Intra-DP takes a further step to eliminates the all-reduce
communication for local operators.

Layer partitioning. Existing distributed inference ap-
proaches [8, 32] in robotic IoT primarily adopt the PP
paradigm. Since the pipeline execution enhances inference

throughput rather than reducing the completion time of a sin-
gle inference [9], existing methods [5,8,20,23,32,43,67,74]
on robotic IoT focus on optimizing the layer partitioning
aspect of PP to achieve fast and energy-efficient inference.
Based on the fact that the amounts of output data in some
intermediate layers of a DNN model are significantly smaller
than that of its raw input data [20], layer partitioning strate-
gies constitute various trade-offs between computation and
transmission and ultimately achieve much better performance
than the all offload method (Fig. 3). These approaches can
be categorized into two main groups based on their opti-
mization goals: accelerating inference for diverse DNN struc-
tures [20,26,32,43,67] and optimizing robot energy consump-
tion under deadline constraints [8, 33, 63]. The widespread
use of layer partitioning to improve inference performance in
robotic applications has attracted many researchers to study
this field [5,20,23,43,67,74], as numerous factors can lead to
differences in the choice of optimal strategy: model struc-
ture, hardware conditions (e.g., computing capabilities of
GPU servers and robots), varying network bandwidth, and
application-specific inference speed and energy consumption
requirements. However, all existing layer partitioning meth-
ods suffer from the transmission bottleneck caused by sequen-
tial execution of DNN operations, which can be eliminated
by Intra-DP.

2.3 Other methods to speed up DNN Models
Inference on Robotic IoT

Model Compression. Quantization and model distillation are
the two most commonly used methods of model compres-
sion on the robots. Quantization [11, 16, 17] is a technique
that reduces the numerical precision of model weights and
activations, thereby minimizing the memory footprint and
computational requirements of deep learning models. This
process typically involves converting high-precision (e.g.,
32-bit) floating-point values to lower-precision (e.g., 8-bit)
floating-point representations, with minimal loss of model ac-
curacy. Model distillation [18,35,61], on the other hand, is an



approach that involves training a smaller, more efficient “stu-
dent” model to mimic the behavior of a larger, more accurate
“teacher” model by minimizing the difference between the
student model’s output and the teacher model’s output. The
distilled student model retains much of the teacher model’s
accuracy while requiring significantly fewer resources. These
model compression methods are orthogonal to distributed in-
ference, because they achieve faster inference speed by modi-
fying the model structure and sacrificing the accuracy of the
result, while distributed inference realizes fast inference with-
out loss of accuracy by intelligently scheduling computation
burden across multiple devices.

Inference Task scheduling. It schedules the execution of
multiple DNN inference tasks to enhance overall system ef-
ficiency. This approach uses various decision algorithms to
strategically schedule the execution location and timing of
multiple inference tasks, such as batching tasks together [73],
prioritizing based on urgency [34,39], and employing deep
reinforcement learning controls [4, 13, 14]. Unlike distributed
inference methods that optimize each individual inference
task, these methods focus on minimizing overall inference
latency and energy consumption, while adopting existing dis-
tributed inference techniques for each task execution. Intra-
DP provides these methods with a new parallel computing
technique (LOP), which demonstrates much higher perfor-
mance in robotic IoT, and these inference task scheduling
methods can be seamlessly integrated into Intra-DP by uti-
lizing their decision algorithms to determine the execution
location and start time of each inference task during the exe-
cution process of Intra-DP.

3 Overview
3.1 Workflow of Intra-DP

Fig. | illustrates the workflow of Intra-DP and compares it
with TP and PP in robotic IoT with limited bandwidth, high-
lighting the transmission overhead faced by existing methods
and how Intra-DP addresses them through its LOP.

To alleviate the transmission overhead in distributed infer-
ence, Intra-DP overlaps the computation and transmission
of local operations (as illustrated in Fig. | of LOP, Intra-DP
transmits the input of the local operation ‘LO1;’ to the GPU
server while simultaneously computing ‘LO1,’, ‘LO13’, and
‘L0235’ on the robot). Compared to TP, Intra-DP eliminates
the need for synchronization (shown by the red dotted lines
in Fig. 1) during all-reduce communication for local opera-
tors, maintaining all-reduce communication only for global
operators. This workflow in LOP allows the inputs of some
local operations can be obtained directly on the current device
without the need for transmission (as exemplified in Fig. 1,
‘LO2;’ directly uses the output of ‘LO1;’ on the GPU server
as its input), effectively eliminates the need for all-reduce
communication for local operators. Although LOP generates
more communication compared to PP due to its fine-grained

transmission of local operations, Intra-DP’s overlapping sig-
nificantly reduces transmission completion time by initiating
data transfer much earlier than PP, which could only begin
transmission after the robot computation phase is finished
due to its sequential execution (see more details in Sec. 6.2).
As a result, Intra-DP dramatically reduces the idle time on
robots compared with existing distributed inference methods,
achieving much faster inference.

Moreover, the idle time on the robot leads to significant
energy waste. Our analysis of the robot’s energy consumption
in various states, presented in Tab. 3, reveals that during idle
time, components such as CPU, GPU, and memory consume
non-negligible power even when not computing (e.g., 95%
energy consumption in our experiments) due to static power
consumption caused by transistors’ leakage current [27]. This
energy consumption cannot be avoided or reduced by entering
a low-power sleep mode, as the robot must promptly resume
work upon receiving inference results. Fortunately, we dis-
covered that the wireless network card consumes only 0.21
Watt for transmission during idle time (4.25 Watt in total),
while the robot consumes 13.35 Watt during computing. Al-
though LOP’s approach of overlapping the computation and
transmission phases among different local operations slightly
increases ethe energy consumption of wireless network cards
during computing phase (only 1.5%), it significantly reduces
the robot’s idle time (14.9% to 41.1% in our experiments),
thereby reducing the overall energy consumption.

3.2 Architecture of Intra-DP
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Figure 4: Architecture of Intra-DP. Intra-DP adopts the same
scheduling scheme as in Fig. 1.

Fig. 4 illustrates the architecture of Intra-DP, which incorpo-
rates interceptors for each operator to enable flexible splitting



and combining of the input and output tensors. There are three
stages: profiling, scheduling optimization, and runtime.

Profiling. It is an offline step that profiles essential runtime
traces for optimization step and only needs to be done once.
Those traces include: 1) the type and input/output sizes of
operators; 2) the execution time of operations on the robot and
GPU server; 3) the data dependencies among operations (i.e.,
the output of one operation serves as the input for another).

Scheduling Optimization. Based on the profiling traces,
Intra-DP generates deployment strategies via its LOSS to de-
termine the partitioning of local operations between robots
and GPU servers, while considering the transmission cost of
LOP. To account for the frequent bandwidth fluctuations in
robotic [oT, Intra-DP generates various deployment strate-
gies for different bandwidth conditions in advance. Note that
the model inference time, typically in the range of tens to
hundreds of milliseconds, is finer than the granularity of band-
width fluctuation in wireless networks. Consequently, we
assumes that the network bandwidth remains stable during
each inference task, while acknowledging that it may vary
across different inference tasks.

Runtime. During the runtime stage, Intra-DP measures the
network bandwidth using mature tools [71] in wireless trans-
mission and adopts the corresponding deployment strategy
based on the current bandwidth. To enable flexible switching
among various deployment strategies in response to rapid
wireless network fluctuations at no cost, Intra-DP maintains
a copy of the model on the GPU server during the profil-
ing stage (Fig. 4). Compared to the original model inference
process, Intra-DP only increases the time cost of intercep-
tors for splitting input tensors and combining output tensors.
The input tensor splitting time is negligible due to backend
data transmission processes of the Intra-DP client and server,
while other local operations continue calculations on the robot
and GPU server. The output tensor combining time is mainly
bound by the completion of computation and transmission on
the other side, possibly causing idle waiting. Intra-DP formu-
lates this waiting time into a nonlinear optimization problem
in its LOSS, minimizing waiting time. In this way, Intra-DP
achieves negligible extra system cost.

4 Detailed Design
4.1 Local Operation Parallelism

LOP guarantees the correctness of inference results by ensur-
ing that all operations still receive the correct input. First, we
analyze the minimum input unit for each operator based on its
calculation characteristics and divide them into global opera-
tors and local operators according to whether the minimum
unit input is the entire input tensor, while also determining
their input/output sizes. Here, we summarize three classes of
local operators common in models used on mobile devices:

» Element-wise local operator. The minimum input unit for
this class of operators is the element of the input tensor.

These operators are widely used in activation functions
such as ReL.U [10], Sigmoid [70], and SiLU [24]. How-
ever, it is important to note that some activation functions,
like softmax [38], require the entire input tensor and are
not local operators, but global operators.

* Block-wise local operator. The minimum input unit for
this class of operators is the block at the corresponding
position in the input tensor. These operators are widely
used in layers associated with convolution operations,
such as convolution [43] and maxpool [57]. The size of
the input blocks is determined by the parameters set by
the corresponding operator [51], including the size of
the convolution kernel, padding, and dilation.

* Row-wise local operator. The minimum input unit for
this class of operators is the rows of the input tensor.
These operators are widely used in layers associated
with matrix operations, such as addition [72] and multi-
plication [15]. Row-wised local operations split the input
matrix by rows and share the same layer parameter ma-
trix on different devices. According to matrix calculation
principles as following, the calculation result of row a;
is (¢11---c1n), which is also a row and can be directly
computed by the next matrix operator in the same way
without all-reduce communication.

ap C11 - Cn
D x(erb) = o
am Cml *** Cmn

It is important to note that the way row-wised local op-
erations split matrices differs from TP, which splits the
layer parameter matrix and transfers a copy of the input
matrix to different devices. Moreover, LOP treats opera-
tors with layer parameter matrices containing only one
row as global operators.

Model ‘ Local operator | Global operator
DenseNet [22] 428 3
ResNet [58] 341 3
ConvNeXt [62] 340 6
RegNet [66] 231 3

Table 2: The number of local and global operators in several models
commonly used on mobile devices.

Local operators are widely used in robotic applications,
especially in convolution layers for computer vision tasks [42]
and point cloud tasks [60], providing a large optimization
space for the parallel execution of local operations. Based on
the above definition, we calculate their proportion in several
models commonly used on mobile devices (Tab. 2).

In addition to the local/global type, input/output of each
operator, and execution time on the robot and GPU server,
the profiling stage also requires the data dependencies among
operations. LOP establishes these data dependencies by de-
termining whether the output of one operation serves as the



input for another. Even if inputs and outputs are only partially
the same, the dependency is recognized. This allows a global
operation to be treated as a special case of a local operation
of which the local operator only calculates once, facilitating
easier discussion and modeling in Sec. 4.2. Notably, when
an output is used by multiple local operations on robots and
GPU servers simultaneously, particularly in block-wise local
operations, LOP allows the re-calculation of these operations,
letting them compute simultaneously on both the robots and
GPU servers (see more details in Sec. 4.2). This approach re-
duces the need for expensive data transmission in robotic IoT
by incorporating a small amount of redundant computation.

4.2 Local Operation Scheduling Strategy

LOSS formulates the partitioning of local operations as a op-
timization problem aimed at minimizing distributed inference
time. To achieve this, we first model the inference time of
Intra-DP based on its workflow (Fig. 1), as follows:

First, we treat each calculation of an operator based on its
minimum input unit as an operation, and define OP; as the set
of operations for the i;;, operator, encompassing both local and
global operators. When the i;;, operator is a global operator,
|OP;| = 1 as it only has one operation. We define X; C OP;
as the set of operations located on robots, and ¥; C OP; as
the set executed on the GPU server, where X; UY; = OP;.
X; NY; # 0 when some local operations of the i, operator
are re-calculated, especially for block-wise local operators;
otherwise, X;NY; = 0.

Next, we denote the completion time of the i;, operator
on the robot as 7!, and that on the GPU server as T,
according to Fig. 1. We define compute (X) as the estimated
computation time of X and fransmit (X) as the estimated
transmission time of X under the given bandwidth, leading to
the following formula:

compute (Xp) i=0
Tr’;blln + compute (X;) i>0,M;=0

Trlobot = MAX (TFI Ti I

robot’ " server

transmit (M;)) + compute (X;) i >0,M; # 0
transmit (Yy) + compute (Yp) i=0
,- Tyerer + compute (Y;) i>0,N;=0
T, = . .
server MAX (7;167‘}@” Trjobot+
transmit (N;)) + compute (Y;) i> 0,N; # 0

Here, M; = parent (X;) — X;— and N; = parent (Y;) —Yi_1,
where parent (X;) is the set of operators whose output serves
as the input of any operator in X;, and the j;, operator is the last
operator of parent (X;). The consideration that an operation
may have several parents allows Intra-DP to support DNN
models with complex structures as directed acyclic graphs.
The MAX function is used to minimize the waiting time when
combining the input tensor, and transmit (X) includes not

only its own transmission time but also the wait time for the
previous transmission to complete.

Next, we present the corresponding objective function and
constraints of Intra-DP on a DNN model with N layers:

min Tr];]bm ey
st. M;=0,viell )
N;=0,vicll 3)

Here, the operators in IT are those whose output data amounts
are larger than the raw input data. Constraints are inspired
by the key observation used in existing layer partitioning
methods to limit the transmission overhead, which states that
the output data amounts in some intermediate layers of a
DNN model are significantly smaller than that of its raw input
data [20].

To tackle the nonlinear and non-convex nature of the objec-
tive function, LOSS employs the differential evolution algo-
rithm [52] to solve the optimization problem, and schedules
the computation and transmission of each operation based
on the obtained solution. We adopt the differential evolution
algorithm for its superior global search capabilities and its
support for parallel computation, enabling high-quality, faster
solution processes. The performance of Intra-DP is highly de-
pendent on the quality of the solution obtained by LOSS, with
better solutions (closer to the global optimal solution) leading
to improved performance. However, finding the global opti-
mal solution for non-convex optimization problems in finite
time remains an open challenge, and developing an enhanced
algorithm that provides delivers, high-quality solutions for the
non-convex optimization problem in LOSS is left for future
work. It is important to note that when applying Intra-DP to a
special model without any local operator, LOSS will degrade
to the existing layer partitioning method.

4.3 Algorithms of Intra-DP

Here, we present the algorithm of Intra-DP for both the client
side on the robot and the server side on the GPU server, as
illustrated in Fig. 4. The client and server components are
presented in Alg. | and Alg. 2, respectively. Initially, both
sides undergo a profiling phase, providing runtime traces
(info_robot and info_server) to LOSS. Intra-DP then gener-
ates schedule plans through LOSS (Alg. 3) for various band-
width conditions during the scheduling optimization stage.
Lastly, during the runtime stage, Intra-DP selects the appro-
priate schedule plan based on the measured bandwidth, lever-
aging the model copy on the GPU server (Fig. 4, line 1 in
Alg. 2) for flexible schedule plan switching without cost.
The profiling and scheduling stages of Intra-DP, although
time-consuming, taking tens of minutes for each model on our
testbed, are offline steps performed in advance and do not im-
pact the inference time during runtime. These pre-calculated
schedule plans for various bandwidth cases only need to be re-
executed when hardware changes occur in the testbed, specif-



Algorithm 1: Intra-DP client

Algorithm 2: Intra-DP server

Input: Data input for inference input; DNN model model
Output: The inference result ret
Data: Z;: input of i, layer ; Xib, M?,Nib: schedule plan of iy,
layer under the b bandwidth
// profiling stage on robot.
1 info_robot = ProfileModel(model)
2 SendToServer(model,info_robot)
3 X,M,N = ReceiveFromServer()
// runtime stage on robot
4 b= TestBandwidth()
5 Zo = input
6 foreach iy, layer in model do

7 | if M? £ 0 then
8 | Z; = combine(Z;, ReceiveFromServer())
9 end
10 if N? # 0 then
11 | SendToServer(Z;,N?)
12 end
13 | ifX"#0andZ; # 0 then
14 | Zis1 = compute(Z;, X?)
15 end
16 else
17 ‘ Zig1=0
18 end
19 end

20 ret = Zn+1
21 return ret

ically when the computing accelerator (GPU) of the robot or
the GPU server is updated. Intra-DP does not employ rein-
forcement learning for scheduling because, when the testbed
hardware remains unchanged, the only variable impacting the
partitioning of local operations is the bandwidth, resulting in
a limited solution space. Consequently, sub-optimal solutions
can be obtained by mathematical solvers within a limited time
frame, avoiding the additional overhead associated with the
exploration phase of reinforcement learning [28].

S Implementation

165 # Import package of Intra-DP

166 import intraDP

167 # Define a VGG19 model as usual
168 vggl9 = VGG19().to(device)

169 # Apply Intra-DP

170 IDP = intraDP(ip = "192.168.50.1")
171 IDP.start_client(model = vggl9)
172 # Run model for inference as usual
173 result = vggl9(input)

Figure 5: An example of applying Intra-DP to a VGG19 [55] model,

where “192.168.50.1” is the IP address of the GPU server.

We implement Intra-DP on Python and PyTorch. Intra-DP
is easy to use and requires only three lines of code to apply

Data: Z;: input of i;j, layer; Yi”, Mf’,Ni” : schedule plan of iy,
layer under the b bandwidth.
// profiling stage on server
1 model,info_robot = ReceiveFromClient ()
2 info_server = ProfileModel(model)
3 X,Y,M,N = LOSS(info_robot,info_server)
4 SendToClient(X,M,N)
// runtime stage on server
s b = TestBandwidth()
6 Zp=10
7 foreach i;;, layer in model do

8 | if M? +0 then

9 ‘ SendToClient(Z;,M?)
10 end
1 | if N’ # 0 then

12 | Zi = combine(Z;, ReceiveFromClient )
13 end
4 | ifY?#0andZ #0 then
15 ‘ Ziy1 = compute(Z;, YP)
16 end
17 else
18 | Ziy1 =0
19 end
20 end

to existing robotic applications, as shown in Fig. 5. This is
achieved by hooking around the forward method of the model,
and in the first forward call we profile the model using the
default PyTorch profiler and schedule; then we intercept and
parallelize all the following forward calls as scheduled.

6 Evaluation

Testbed. The evaluation was conducted on a customized
four-wheeled robot (Fig. 6a), and a customized air-ground
robot(Fig. 6b). They are each equipped with a Jetson Xavier
NX [47] 8G onboard computer that is capable of Al model
inference with local computation resources. The system runs
Ubuntu 20.04 with ROS Noetic and a dual-band USB network
card (MediaTek MT76x2U) for wireless connectivity. The
Jetson Xavier NX interfaces with a Leishen N10P LiDAR,
ORBBEC Astra depth camera, and an STM32F407VET6 con-
troller via USB serial ports. Both LiDAR and depth cameras
facilitate environmental perception, enabling autonomous nav-
igation, obstacle avoidance, and SLAM mapping. The GPU
server is a PC equipped with an Intel(R) i7-7700K CPU @
4.20GHz and an NVIDIA GeForce GTX 1080 Ti 11GB GPU,
connected to our robot via Wi-Fi 6 over S0MHz channel at
5GHz frequency in our experiments.

Tab. 3 presents the overall on-board energy consumption
(excluding motor energy consumption for robot movement)
of the robot in various states: inference (model inference
with full GPU utilization, including CPU and GPU energy



Algorithm 3: LOSS

Data: info_robot,info_server: runtime traces on robot and
GPU server ; BW: theoretical maximum bandwidth
in robotic IoT; Xl-b s Yib s Mll? ,Nib : schedule plan of i,
layer under the b bandwidth; Tr];]b or follow the
modeling in the Sec. 4.2.

// scheduling optimization stage
1 foreach b bandwidth less than BW do
// Initialize
foreach i, layer in model do
)(l_init — 0P,
%init =0

N s W N

end

// add constraints

foreach i, layer in I1 do
constraints.add(M; = 0)
constraints.add(N; = 0)

L= IS A

end
// objective function
10 obj_func = TrIZb o (info_robot info_server,
()(07 "7xNa%7 "79/-N)7b)
// solve optimization problems
1 X(l)’, ..7X1{’,,Yé’, "»Yze =dif ferential_evolution
_solver(obj_func,constraints,( X", .., Xy,
yinit D/init))
0 /N

12 foreach iy, layer in model do

13 Mf’ = parent (Xib) —Xl-lll
14 N! = parent (Y?) —Y?,
15 end

16 end

BW | N BW | N BW | N

17 return UpY UL o X7, Ut Uil Y2, URY, Uilo MY,
BW | N b
Up=1 Uito N;

consumption), communication (communication with the GPU
server, including wireless network card energy consumption),
and standby (robot has no tasks to execute). The Jetson Xavier
NX is connected to a 21.6Wh battery that supports up to 1.6
hours of model inference.

inference | communication | standby
Energy (Watt) 13.35 4.25 4.04

Table 3: Energy consumption per unit time (Watt) of our robot in
different states.

Workload. We evaluated two typical real-world robotic
applications on our testbed: Kapao [42], a real-time people-
tracking application on our four-wheeled robot with a CNN-
based human keypoint detection model (Fig 7), and AGR-
Nav [60], an autonomous navigation application on our air-
ground robot with a CNN-based 3D semantic scene comple-
tion model (Fig 8). We also evaluated several models common
to mobile devices with their implementation from Torchvi-
sion [40] on a larger scale to further corroborate our observa-
tions and findings: DenseNet [22], RegNet [66], VGGNet [55],

777777 Micro LIDAR Module
| Battery | (LFMini Plus)

(a) Four-wheeled robot

Figure 6: The detailed composition of the robot platforms

X

B

Figure 7: A real-time people-tracking robotic application on our
robot based on a human pose estimation model, Kapao [42].

Figure 8: By predicting occlusions in advance, AGRNav [60] gains
an accurate perception of the environment and avoids collisions,
resulting in efficient and energy-saving paths.

ConvNeXt [62].

Experiment Environments. We evaluated two real-world
environments: indoors (robots move in our laboratory with
desks and separators interfering with wireless signals) and
outdoors (robots move in our campus garden with trees and
bushes interfering with wireless signals, resulting in lower
bandwidth). The corresponding bandwidths between the robot
and the GPU server in indoors and outdoors scenarios are
shown in Fig. 2.

Baselines. We compared Intra-DP with four baselines: lo-
cal computation (entire model on the robot), all offload (en-
tire model on GPU servers), and two SOTA PP methods,
DSCCS [32] (accelerating inference) and SPSO-GA [8] (opti-
mizing energy consumption under deadline constraints). No
model compression methods are involved and all these offload-
ing systems are transmitting raw model activations without
compression to avoid affecting model accuracy. Although



Model(number Inference time(s) Energy goqsumption Energ}/ consumption
of parameters) System ' . per unit time(W) ' per inference(J)
indoors ‘ outdoors indoors ‘ outdoors indoors ‘ outdoors

Local 0.92(4+0.06) | 0.92(+0.06) | 10.61(£0.48) | 10.61(£0.48) | 9.77(£0.61) | 9.77(£0.61)
Kapao ALL 0.60(4+0.35) | 0.76(+1.07) | 4.81(£0.11) 4.74(+0.17) | 2.87(£0.07) | 3.6(£+0.13)
(7TM) DSCCS 0.51(4£0.26) | 0.64(+0.69) | 6.58(42.34) 7.35(+£2.49) | 3.33(%1.18) | 4.67(4+1.58)
SPSO-GA | 0.47(4+0.24) | 0.59(40.74) 5.81(£1.8) 6.32(42.1) 2.7(£0.84) | 3.75(%£1.25)
Intra-DP | 0.45(£0.35) | 0.55(£0.57) | 6.02(£2.28) 6.85(42.57) | 2.68(£1.01) | 3.8(41.43)
Local 0.53(4+0.02) | 0.53(+0.02) | 8.11(40.26) 8.11(£0.26) | 4.33(£0.19) | 4.33(£0.19)
AGRNav ALL 0.99(4+0.60) | 1.16(+1.39) | 4.56(4+0.09) 4.51(+0.13) | 4.49(4+0.09) | 5.24(40.15)
(0.84M) DSCCS 0.52(4+0.13) | 0.52(+0.66) | 7.36(41.35) 6.7(£1.71) 3.81(£0.7) 3.5(1+0.89)
’ SPSO-GA | 0.51(£0.14) | 0.52(40.56) 7.1(£1.46) 6.83(£1.74) 3.6(£0.74) | 3.57(£0.91)
Intra-DP | 0.40(£0.14) | 0.46(£0.46) 6.63(%1.8) 7.29(%1.37) | 2.63(£0.71) | 3.37(4+0.63)

Table 4: Average inference time (Second), energy consumption per unit time (Watt) and energy consumption per inference (Joule), along with
the standard deviation (£n), for Kapao and AGRNav in different environments using various systems. “Local” represents “local computation”,

and “All” represents “all offload”.

local computation and all offload can be considered special
cases of layer partitioning, we still evaluated them separately
to verify the contribution of the other baselines in reducing in-
ference latency and energy consumption. We set SPSO-GA’s
deadline constraint to 1 Hz, the minimum frequency required
for robot movement control. Given our primary focus on infer-
ence time and energy consumption per inference, we disabled
pipeline execution to concentrate solely on assessing the per-
formance of individual inference task.
The evaluation questions are as follows:

e RQ1: How much does Intra-DP benefit real-world
robotic applications compared to baseline systems in
terms of inference time and energy consumption?

¢ RQ2: How does Intra-DP achieve faster inference time
compared to other baselines?

* RQ3: How does Intra-DP perform on models common
to mobile devices on a larger scale?

* RQ4: What are the limitations and potentials of Intra-
DP?

6.1 End-to-end Performance

Inference time. The columns about inference time on Tab.4
demonstrates that Intra-DP achieves the fastest inference time
among all baselines on both Kapao and AGRNav in both
indoor and outdoor scenarios. Compared to other baselines,
Intra-DP reduces Kapao’s inference time by 5% to 51% in-
doors and 7% to 40% outdoors, while reducing AGRNav’s
inference time by 22% to 60% indoors and 12% to 61% out-
doors. DSCCS failed to achieve the fastest inference time
among PP methods due to the frequent and sharp bandwidth
fluctuations in robotic IoT. Furthermore, the large standard
deviation and longer inference times outdoors for offloading
methods (all offload, two PP methods, and Intra-DP) can be
attributed to the more frequent and severe bandwidth fluctu-
ations outdoors compared to indoors, as illustrated in Fig. 2.

A detailed breakdown of how Intra-DP achieves such fast
inference time will be provided in Sec. 6.2.

Energy Consumption. From the columns about energy
consumption per unit time on Tab. 4, we can learn that for Ka-
pao and AGRNav, local computation has the highest energy
consumption per unit time due to the heavy computational
burden on the robot, while all offload has the lowest energy
consumption per unit time as it places the entire computa-
tional burden onto the GPU server. DSCCS, SPSO-GA, and
Intra-DP have moderate energy consumption per unit time
since they place partial computational burden on the robots.
Among these three methods, DSCCS achieves the lowest en-
ergy consumption per unit time, as it is specifically designed to
optimize energy consumption. Intra-DP incurs slightly higher
energy consumption per unit time due to possibly extra local
computation on the re-calculation of some local operations.

The last columns about energy consumption per inference
of Tab. 4 demonstrates that despite the high energy consump-
tion per unit time, Intra-DP achieves the lowest energy con-
sumption per inference among all baselines on both Kapao
and AGRNav in both indoor and outdoor scenarios. Compared
to other baselines, Intra-DP reduces Kapao’s energy consump-
tion per inference by 4% to 72% indoors and up to 62% out-
doors, while reducing AGRNav’s energy consumption per
inference by 27% to 42% indoors and 4% to 36% outdoors.
While Intra-DP incurs slightly higher energy consumption
per unit time, Intra-DP achieved the fastest inference time by
overlapping the computation and transmission of different
local operations, leading the least overall energy consumption
per inference.

6.2 Breakdown

We present a detailed breakdown of each phase of the in-
ference process in Tab. 5 to explain how Intra-DP achieved
fastest inference time compared to other baselines. According
to their workflow, as shown in Fig. 1, there are three sequen-
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. Robot computation Transmission Server computation
Model | System Metrics . . .
indoors | outdoors indoors | outdoors indoors | outdoors
Local Time(s) 0.92(£0.06)|0.92(£0.06)| 0.00(%0.00) | 0.00(%0.00) | 0.00(%0.00) | 0.00(%0.00)
Percentage(%)|100.0(£0.0)|100.0(£0.0)|  0.0(£0.0) 0.0(£0.0) 0.0(£0.0) 0.0(£0.0)
ALL Time(s) 0.06(£0.00)|0.05(£0.01)| 0.26(40.22) | 0.35(40.63) | 0.31(4+0.22) | 0.39(£0.63)
Percentage(%)| 9.3(£0.8) | 7.1(£1.1) | 44.0(£36.1) | 46.0(£82.9) | 51.8(£36.1) | 51.9(£82.9)
Kapao DSCCS Time(s) 0.17(£0.25)|0.19(£0.29)| 0.08(%0.10) | 0.13(40.24) | 0.28(40.17) | 0.35(%0.60)
(77M) Percentage(%)|34.0(£49.2)(29.7(£46.0)| 16.0(£20.4) | 20.0(£37.1) | 55.1(+34.0) | 55.3(+£94.0)
SPSO-GA Time(s) 0.11(£0.17)|0.13(£0.21)| 0.08(%0.09) | 0.11(%0.18) | 0.31(%0.19) | 0.39(%0.64)
Percentage(%) |22.7(£35.5)[22.1(£36.0)| 16.4(£19.5) | 18.0(£30.1) | 65.8(£40.0) [64.9(£108.3)
Intra-DP Time(s) 0.22(£0.17)|0.26(4£0.27)| 0.13(+0.17) | 0.20(40.38) | 0.23(4+0.23) | 0.27(1+0.40)
Percentage(%)|48.4(+37.5)|47.2(£48.7)| 29.6(£37.1) | 36.6(£68.2) | 51.1(+51.8) | 49.3(£71.7)
Local Time(s) 0.53(£0.02)|0.53(£+0.02)| 0.00(%0.00) | 0.00(%0.00) | 0.00(%0.00) | 0.00(%0.00)
Percentage(%)|100.0(£0.0)|100.0(£0.0)|  0.0(£0.0) 0.0(£0.0) 0.0(£0.0) 0.0(£0.0)
ALL Time(s) 0.01(£0.00)|0.01(£0.00)| 0.50(%0.33) | 0.59(40.74) | 0.53(4+0.33) | 0.62(+0.74)
Percentage(%)| 0.8(+0.3) | 0.6(£0.2) | 50.9(+33.1) | 51.2(£64.2) | 53.3(£33.1) | 53.2(4+64.2)
AGRNav DSCCS Time(s) 0.02(£0.08)|0.04(40.21)| 0.23(40.15) | 0.20(%0.35) | 0.29(40.11) | 0.31(30.49)
(0.84M) Percentage(%)| 4.7(£14.9) | 7.4(£39.6) | 44.2(£29.0) | 37.7(£66.9) | 56.1(+21.6) | 59.9(+93.8)
SPSO-GA Time(s) 0.05(£0.10)|0.04(£0.20)| 0.20(%0.17) | 0.20(%0.27) | 0.29(%0.13) | 0.31(%0.43)
Percentage(%)| 9.0(£20.0) | 7.3(£38.0) | 39.3(£34.2) | 38.0(£52.3) | 56.7(+26.5) | 59.8(£81.5)
Intra-DP Time(s) 0.11(£0.04)|0.18(40.18)| 0.32(%+5.39) | 0.27(4+0.46) | 0.22(4+2.69) | 0.23(+0.31)
Percentage(%) | 27.0(+9.3) [39.2(£38.8)[80.0(+1360.9)|58.1(+100.2)|56.5(£680.3) | 50.0(+66.2)

Table 5: The time spent in each phase of the inference process and their percentage of the total inference time, along with the standard
deviation (+n), for the Kapao and AGRNav in different environments using various systems.

tial phases: robot computation (computing early layers on
robots), transmission (transmitting intermediate results), and
server computation (completing inference on GPU servers).
Local computation places the entire model on the robot and
only has the robot computation time, while all offload places
the entire model on the GPU server and has to transfer the raw
input to the GPU server. Based on the fact that the amounts
of output data in some intermediate layers of a DNN model
are significantly smaller than that of its raw input data [20],
and considering that DCCSS, SPSO-GA, and Intra-DP can
respond to rapid wireless network fluctuations, these methods
have lower transmission volumes of intermediate results com-
pared to all offload, leading to shorter transmission time in
Tab. 5.

Transmission time accounts for up to 44.2% of the total
inference time in PP methods (SPSO-GA and DSCCS) in
Tab. 5, highlighting the significant transmission bottlenecks
faced by existing methods based on the PP paradigm, even
with SOTA layer partitioning strategies. Although Intra-DP
generates more communication compared to PP methods due
to its finer-grain transmission of local operators (both Kapao
and AGRNav in Tab. 5), its overlapping significantly reduces
transmission completion time by initiating data transfer much
earlier than PP, as shown in Fig. 1. As a result, while PP
methods can only execute each phase sequentially (the per-
centages for all phases add up to about 100% for SPSO-GA
and DSCCS), Intra-DP overlaps the transmission phase with
the robot computation phase and the server computation phase
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(the percentages for all stages add up to more than 100% for
Intra-DP), achieving faster inference time compared to other
baselines.

6.3 Validation on a larger range of models

Our comprehensive evaluation of Intra-DP and other base-
lines, conducted across a diverse set of models commonly
used in mobile devices with varying parameter counts (Ta-
ble 6), confirmed Intra-DP’s consistent advantages across var-
ious models. We observed that offloading methods achieved
relatively larger performance gains compared to local compu-
tation for models with higher local computation time, while
they even performed slower inference than local computation
on DenseNet. This suggests that models with larger compu-
tational burden benefit more significantly from offloading,
while those with fewer computational burden may suffer from
the additional communication cost, particularly in robotic
10T systems with limited bandwidth. Furthermore, although
Intra-DP consistently outperformed other baselines, its per-
formance gains compared to other baselines were relatively
smaller for models with fewer parameters. This observation
can be attributed to the fact that Intra-DP’s performance gain
is primarily achieved through the parallel execution of lo-
cal operations, making it dependent on the model’s size and
structure. When a model has fewer parameters, the number
of local operations available for parallel execution is reduced,
limiting the optimization potential for Intra-DP to enhance
performance.



Energy consumption

Energy consumption

?f?a?érlgg;?g System Inference time(ms) per unit time(W) per inference(J)
indoors ‘ outdoors indoors ‘ outdoors indoors ‘ outdoors
Local 56.29(£4.34) | 56.29(£4.34) | 8.2(£0.27) | 8.2(£0.27) |0.46(40.04)|0.46(£0.04)
ALL 115.18(+48.54) | 128.50(4+45.00) | 5.43(£0.24) | 5.46(40.28) | 0.63(£0.03)| 0.7(£0.04)
DenseNet(7.98M) DSCCS | 95.25(£39.06) |100.73(£33.78) | 5.03(£0.17) | 4.74(40.2) |0.48(40.02)|0.48(+0.02)
SPSO-GA | 98.69(£34.63) | 106.73(£71.82)| 6.91(£0.45) | 6.86(+0.46) | 0.68(£0.04) | 0.73(£0.05)
Intra-DP | 85.86(427.63) | 92.35(£22.95) | 4.77(£0.7) | 5.14(£0.22) [ 0.41(%0.06) | 0.48(40.02)
Local |151.05(411.53)|151.05(£11.53)| 9.0(40.3) 9.0(%0.3) 1.36(£0.1) | 1.36(£0.1)
ALL 103.94(4+46.84) | 114.85(4+45.10) | 5.46(£0.22) | 5.44(40.22) |0.57(£0.02)|0.62(£0.02)
RegNet(54M) DSCCS | 83.88(436.04) | 89.90(+31.34) | 5.02(4+0.19) | 4.8(£0.18) |0.42(4+0.02) | 0.43(40.02)
SPSO-GA | 82.74(£36.90) | 90.10(£30.92) | 5.86(%1.8) | 5.36(%1.34) | 0.49(£0.15) | 0.48(£0.12)
Intra-DP | 66.98(427.66) | 72.12(£24.27) | 4.67(+1.28) | 4.69(£1.34) |0.31(£0.09) | 0.34(£0.1)
Local 96.34(£6.04) | 96.34(£6.04) | 9.78(£0.34) | 9.78(+0.34) | 0.94(40.06) | 0.94(£0.06)
ALL 87.90(£44.72) | 96.35(+37.58) | 5.8(£0.27) | 5.87(4+0.23) |0.51(£0.02)|0.57(£0.02)
VGG19(143M)  DSCCS | 71.97(433.75) | 76.92(4£29.90) | 5.32(4+0.23) | 4.83(£0.2) |0.38(%0.02) [ 0.37(4+0.02)
SPSO-GA | 69.08(£59.95) | 73.77(£24.43) | 6.6(£2.14) | 6.94(%£2.34) | 0.46(£0.15) | 0.51(£0.17)
Intra-DP | 54.62(4+14.71) | 58.82(%11.14) | 5.8(%1.54) | 6.51(£1.35) | 0.32(%0.08) | 0.38(40.08)
Local |287.70(429.58)|287.70(£29.58) | 10.72(40.38) | 10.72(£0.38) | 3.08(+0.32) | 3.08(40.32)
ALL 117.12(+46.59) | 127.35(+43.77) | 5.67(£0.34) | 5.65(40.25) | 0.66(£0.04)|0.72(£0.03)
ConvNeXt(197M) DSCCS | 94.06(+36.36) | 99.19(4+31.79) | 5.04(+0.16) | 4.99(£0.21) | 0.47(+0.01) | 0.5(+0.02)
SPSO-GA | 94.70(£48.38) | 102.09(4+43.78)| 5.06(£0.31) | 5.02(4+0.37) | 0.48(£0.03)|0.51(£0.04)
Intra-DP | 75.43(440.09) | 80.46(£35.78) | 4.06(£0.21) | 4.04(£0.22) [0.31(£0.02) | 0.32(4+0.02)

Table 6: Average inference time (Millisecond), energy consumption per unit time (Watt) and energy consumption per inference (Joule), along
with the standard deviation (£n), for torchvision models in different environments using various systems.

6.4 Lessons learned

Limited bandwidth. Due to hardware limitations, we evalu-
ated Intra-DP’s performance only on the most common and
easily accessible Wi-Fi networks on robots under different
environments, rather than a wider variety of wireless networks
such as 6G [7] or WIMAX [3]. Although these wireless net-
works differ in throughput and communication range due to
their various transmission protocols, they share common is-
sues due to the decay of wireless signals caused by device
movement [41,49], occlusion by physical barriers [12, 54],
and wireless channel preemption by other devices [2,53]. The
resulting bandwidth fluctuations in practice (Fig. 2) lead to
limited bandwidth in these wireless networks, where Intra-DP
proves beneficial. As models grow larger and GPU devices
become more powerful, the desired bandwidth for distributed
inference will continue to increase [32]. And when GPU
servers are deployed in commercial clouds, robotic IoT rely
not only on wireless networks but also on Internet access to
the cloud, where available bandwidth are significantly con-
strained due to network congestion and routing issues [45],
making Intra-DP still beneficial.

Local Operator. During the implementation and evalua-
tion of Intra-DP, we discovered that the presence of more
local operator allows for increased parallel execution during
model inference, thereby enhancing the performance improve-
ment of Intra-DP. Future work should focus on supporting
additional types of local operators and exploring the possibil-
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ity of transforming global operators into local ones through
lightweight synchronization techniques, based on their com-
putational characteristics (e.g., synchronize the sum results
in softmax [38] instead of directly transferring the full input
tensor).

Future Work. It is of interest to explore enhancing Intra-
DP by developing a distributed inference system for multiple
robots with several models, aiming to minimize overall infer-
ence time and energy consumption. Intra-DP’s finer-grained
scheduling granularity enables more efficient utilization of
computing resources, which is particularly advantageous in
resource-constrained robotic scenarios.

7 Conclusion

In this paper, we present Intra-DP, a high-performance dis-
tributed inference system optimized for robotic IoT networks.
By breaking down the granularity of distributed inference
based on local operators via LOP and applying adaptive
scheduling to the computation and transmission of each local
operation via LOSS, Intra-DP dramatically reduces the trans-
mission overhead in robotic IoT by overlapping the computa-
tion and transmission of different local operations, achieving
fast and energy-efficient distributed inference. We envision
that the fast and energy-efficient inference of Intra-DP will
foster the real-world deployment of diverse Al robotic tasks
in the field.
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